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Abstract- Novel energy-based coupled dastoplasllc damage theories arc pres..:nt..:d in this paper.
The pH'posed t,'rmulation employs Irreversible therml1dynamics .md internal state variable th":l'ry
for ductile and brittle materials. At variance with Lemaitre's work on damage-dastoplasticity, the
pres..:nt li'rmulatill11 renders rational therml'dynamie potential and damage ..:nergy release rate. In
Cl'ntrast to prevIous wllrk by SlOW and Ju (featuring;m additiv'e split of the stress tensor), current
formubtion assumes an additive split of the strain tensor. It is shown that the "str'lin split" damage­
c1astl'plasticity formulation leads h' mPfe wbust tangent nwJuli than the "stress split"' formulation.
Thl' plastic tlllW rule and harJ..:ning law arc charactc'ri7ed in t..:rrns of th..: elrc'ctiv..: quantities:
l'i:. the "{/''('Ii,'" sIreI.' -'I'<lee ,'(<I-"ici/r. This ntel'llanism is b,'th physically weil-rnotivalL'd and
c,'mput;t1Hlnally ellicicnl. Further, a fourth·order ani5<ltropie damage mc'ehanism is prop'lSL:d for
hntlle materiaLs. ({;Itional mc'ch;lnisms are also presented to acc'ount for the mlcronack opening
and d'lSmg operations as well as the strain-r;t1c dL:pendL:ncy of minocr;Kk growth.

Ellil'ient ollnputatioual algorilhms for proposed dastoplastic damage nHldeis arc suhsc',!uL:nlly
e.\plorcd hy making usc of thL: "opc'rator splitting" nlL:lhodology. In particubr, nL:W three-sIL"l'
0pl'Lrtor splil ;ligonllnns Me prL:sc'nlL"d. "pphCltHlltlS madl' hI a dass of Invi"'id and ralL"-dl'J'c'lIlknl
cap·damagL: modds for connl'le and mortar. r,perimcnlal valid"llons ML: al5<' glvcn to lilustr;11L"
thL: appllL:ahihty of lhc propllsL:d d;lInagc models.

J. I NTRO()( !('TION

Thl: indastil: hdlavior of thl: ml:l:hanil:all:onstitutiw responses of enginel:ring materials is
in gl:nl:ral rdated to the irrl:versibk thl:fIllOdynamil.: prol.:eSSl:S involving l:nergy dissipation
and stiffness variation due to physil.:al l:hanges in the mil:rostrul.:ture. Some l:ommonly
employed inelastil.: theories indude. for instance. visl.:oelastil:ity. plastil:ity and damage
mel:hanil:s, In the past two del:ades. in partil:ular. the damage mel:hanil.:s approal:h has
emerged as a via hie framework for the description of distrihuted material damage induding
material stiffness degradation. mil:rol:r.ll:k initiation. growth and coaIcSCel1l.:e. as well as
damage-indul.:ed anisotropy. etc, Damage mel.:hanil.:s has heen applil:d to model creep
damagl: (lluit. IlJ74; Kadlanov. IlJ58. 1981. 1984; Krajl:inovil:. IlJ83a; Lel:kie and
Hayhurst. !lJ74; Lemaitre. IlJ84; Murakami. 1981; Rahotnov. 1%3). fatigue damage
(Chahodle. IlJ74; Lemaitre. 1lJ71. IlJ84; Marigo. 1985). l:reep fatigue interaction
(Lcmaitre. IlJ84; Lemaitre and Chabol:he. 1974; Lemaitre and Plumtree. IlJ7lJ). elasticity
wuplcd with damage (Cordehois and SidorofL IlJ7lJ; J u e( al.• IlJ89; Kal:hanov. 1980.
IlJ87a. h; Krajcinovil: and Fonseka. 19X 1; Ortiz. 1985; Wu. IlJ85). and dUl.:tile plastil.:
damage (Cordehois and SidorolL IlJX2; Dragon. 19X5; Dragon and Chihab. 1985;
Lemaitre and Dufailly. IlJ77; Lemaitre. IlJX4. 19X5. IlJ86; Simo and Ju. IlJX7a.b.c). In
addition. dam'lgl: mel.:hanil:s has bel:n introdul:ed to dl:scribl: the inelastic behavior of
hrittle materials SUdl as l:Onl:rde and rol.:k (Franwis. 1984; I1ankarnban and Krajcinovic.
19X7; Kal:hanov. I\)X2; Krajl:inovil:. I\)X3b; Krajcinovic and Fonseka. I\)XI; Loland.
1980; Lorrain and Loland. 1\)83; Mazars. 1\)82. 1986; Mazars and Lemaitre. 1984;
Rcsl:nde and Martin. 1\)84; Simo and Ju. 1987a. b),

Recently. mil:romechanical damage theories arc proposed in the literature to modd
non-intefal.:ting mil:rol:r.ll:k growth in an originally isotropil.: linear c1astil.: brittle solid; sec.
e.g. Wu (19X5). Krajl.:inovic and Fanella (I\)X6). Sumarac and Krajcinovie (1\)87) (which
extends the work of Horii and Nemat-Nasser (1983) to a process model), [n the case of
nonlinear dastoplasticity coupled with many distributed interacting microcracks. never­
thekss. sudl mil.:romechanical derivation of microcrack kinl:tic laws presents treml:ndous
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difficultic:s anL! challcngc:s. and is an onJcctivc for futun: rcscarch. Furthcr. as v.as rcmarkcd
by Krajcinovic (1985). a purely micrnmech~lnical theory may nevcr rcplacc a pr,lpcrly
formulatcd phenomc:nological theory as a de:sign tool.

Continuum damage: me:chanics is base:d on the: the:rmodynamics llf irre:ve:rsiblc
processes. the internal state: variable theory and rele:vant physical considerations (e:.g.
the assumption of distributeL! microcracks. homoge:nization concept. the: ddinition of
micromechanical damage variable:. kinetic law of damage: growth. nonkKal damage
characterization and plasticity-damage: coupling me:chanism. etc.). A s~'alar damage:
variable: is suitable for characte:rizing (homoge:nize:d) isotroric damage proce:sse:s. :"ie:ve:rthc­
le:ss. a tensor-valued damagc variable: (fourth orL!a) is ne:ccssary in llrlkr to account for
anisotropic damage dTe:cts.

Many rcse:archcrs in L!amage mechanics focused on the line:ar "elastic-damage:" mech­
anics for brittle: matcrials: i.c. line:ar clastic solids with distribute:d microcracks. For non­
line:arly elastic solids and t:lastoplastic solids. nont:thekss. tht:ir mctl1llds art: not applicabk
in gt:neral. By Cl)l1trast. some: dastoplastic damage theorie:s have: been proposed (e.g.
Lemaitre. !984, 1985. 1986: Drag11l1. 1985: Simo and Ju. 1987a. b.c). Howe:ver, it appears
that the thermodynamic frc:e enc:rgy function and the "damage energy release ratc" proposed
by Lemaitre (1985) may not be physically appropriate. [n fact. the: theory advocated
by Lemaitre implies that the thermodynamic force conjugate to elastoplastic microcrack
evolution is simply the clastic strain erll'rgy. i.e. plastic strains do not contribute to the
micrncrack growth proccss. On the llthcr hand. the theory proposed by Dragon (1 1)85)
docs not ofrl:r thermodynamic damagl: l:ncrgy criteria, rlllr provilk tangent moduli or
numerical simulations or experimental validations. llence, couple:d elastoplastic damagl:
mechanics w;rrrants further study.

It is import;lIlt to c1anfy the ll:rm "damagc" employed in the cUITentliter;lture. ;\s was
poinll:d out by Krajcirlllvic. there arc at 1l:;lst three dill'crent le:vels of scale: of "damage" in
m;llerial mcch;lIlic;r1 rcsponses: (a) ;ltomic v,lids and crystal btticl: dd'cl"ts. which rl:quirc
thc usc of non-continuum mechanics modds ;It the ;rlomic sc;r1e: (h) microcracks and
microvoids. which require nllcromcchanical damage modds (to nllldd microstructural
changes and individual microcracks growth) or phenomenological continuum damagc
modds (to model distrihuted microcracks): and (c) macrocracKs, which w;lrrant fracturc
mechanics modds to model the growth of diserell: macrocr;lcKs.

In this paper, novel cnergy-based (isotropic or anisotropic) couple:d e1astoplastic dam­
age theories arc presented to characterize distributcd microcracks (not ductile microvoids)
in brittle damagc modcs [including "Clcavagc ''', "Cleavagc 2" and "Cleavagt: r in the
sense of Ashby (197\))1. ;\n outline of the papt:r is as follows. In Section 2. the definitions
of "damage variahle" arc reviewed: the Ihlmogenization cllncept and alternative nonlocal
damage dclinition arc discusst:d: and the h;lsic hypotheses of damage mechanics devclope:d
arc summarized. In Section .I energy-bast:d isotropic t:lastoplastic damage tht:ories arc
given, which are capahk of accoml11odating nonlinear clastic rt:sponse and general plastic
response. The proposed theorit:s can predict de:gradation in hoth clastic and plastic material
properties (such as clastic nhlduli and plastic now stresses). At variance with Lell1aitre's
formulation, a new free cnergy function and proper "damage energy rcleasc rate" arc
constructed.

In contrast to previous work hy Simo and Ju (1987a, b. c) (which features an additive
split of the stress tt:nsor). this paper assumes an additive split of the strain tcnsor into the
"c1astic damagc" and "plastic-damage" parts from the outset. It is shown that thc current
"strain split" damage-plasticity formulation is physically more appealing (analogous to the
i-integral in nonlinear fracturc mechanics) and results in more robust tangcnt moduli than
the "stress split" formulation. In addition. the plastic flow rule and hardening law are
characterized in terms of the eflcctive stress quantities: namely. the e[ketire stress space
plasticity. A rate-dependent damage mechanism is suhsequently developed to account for
thc microcrack rctardation effccts at higher strain rates. Rational mcchanism is also pro­
posed to simulate the "mode I" microcrack opcning and closing operations.

The framework constructed in Section 3 is further extended in Section 4 to develop
simple energy-based fourth-order anisotropic damage models for brittle materials.
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Rewgnizing the important role played by constitutive algorithms in constitutive
theories and modeling. computational aspects of the proposed elastoplastic damage
models are systematically explored in Section 5. In particular. new three-step operator
split algorithms are developed within the present framework. Application is made to a
class of inviscid and rate-dependent cap-damage models for concrete and mortar in
Section 6. Experimental validations are also given to illustrate the applicability of
proposed damage models and algorithms.

2. A FRAMEWORK FOR D,·\~IAGE MECHA!"[CS

Physically. degradation of material properties is related to the initiation. growth and
coalescence of microcracks or microvoids. Some basic concepts pertaining to damage
mechanics are reviewed in this section.

2.1. Daf1/a.llc I'ariah!c and //Ilf1/oqcni:alion
"Damage" can be defined as a collection of permanent microstructural changes con­

cerning material thermolm:chanical properties (e.g. stiffness. strength. anisotropy. etc.)
brought about in a material by a set of irreversible physical microcracking proct:sses
rt:sulting from the application of tht:rmomt:chanicalloadings (Talrt:ja. 19X5). The selection
of a "damage" variable should be based on proper micromechanical considerations. For
several types of material microstructure. microcracks develop in characteristic patterns
and the mierostructurt: can he assumed to he statistically homogeneous. Thest: pattt:rned
damages arc ohserved in fihrous composite laminates. concrete and ceramics (Weitsman.
IlJX7). Several delini tions of damage arc possihle for eonsidt:ration. For example.

(i) Deline the second-order damagt: tensor [) as a spatial awrage:

(I)

in whidl b ami" denote the displacement diswntinuity vector (b == [ul> and tht: unit normal
wctor ;u:ross tht: kth microcraek SUrl~ICt: Slkl. rt:spectivdy (Vakulenko and Kachanov. 1971 ;
Dragon. (985). The reprt:sentative volumt: V is a propt:r statistical and micromechanical
nH.:asure for observing or computing an oVt:rall constitutivt: law. The minimum prt:scription
for the rt:prt:sentative unit cell is that the magnitude of local wave-like tluctuations about
the t:xpected (mean) values of phast: variables should not depend on the size of tht: unit cell
so that the system is macroscopically homogeneous (H ill. 1%7. 1972). At the macroscopic
level. I' plays the role ofan infinitesimal matt:rial neighborhood with uniform state variables.
At the microscalc. however. V plays the role of a "micro-continuum" with nonuniform
spatial variables (Eringen. 1968; Ortiz. 19S7a). However. as pointed out by Krajcinovic
(1985). the delinition (I) is thermodynamically incorrect because it leads to energy dis­
sipation during unloading. Equation ( I) is. neverthclt:ss. a good index for "added tlexibility"
(damage-induced inelastic strain) due to opt:n microcracks.

(ii) Detint: the damage variable dn (in the normal dirt:ction II) as

(2)

where A" is the damagt:d surface area (taking into account the microcrack area. the micro­
stress concentration and the interaction betwet:n microcracks) and A r is the total cross­
sectional area of a surface of a unit cell along a normal direction n (sec. e.g. Lemaitre. 1984.
1985). The dclinition of a damage variable can also be anisotropic to signify different
oriented geometry and micro-defects in material bonding; c.g. three changing principal
normal directions of a thret:-dimensional oriented microcrack.
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(iii) Define the damage measure d as (assuming only one single microcrack)

(3)

where a is the radius of an assumed single sphericnl microcrack and V is the volume of a
representative unit cell in the mesostructure (sec. e.g. Budiansky and O'Connell. 1976; Wu.
1985: Krajcinovic. 1987). This definition is related to the microcrack porosity (con­
centration ratio) within the unit cell. It is emphasized that eqn (3) cun lead to a fourth­
order damage tensor representation.

The homogenization procedure can be applied not only to damage variables but also to
stresses and strains. For instance. one may write

(4)

~.~. Alt('rlulti,'(' mml(lcal dtll1w.t!(· dwrtlct('ri:atiofl
As was noted earlier. the state v.uiaoles display non-uniform spatial fluctuations at

the mieroscale. Therefore. l1(,lnlocal continuum theory may be considered for damage
medlanics (sec. e.g. Hazant (·t al.• 1987: Eringen. 191.0. 1987: Eringen and Edelen. 1972;
Pijaudier-C'abot .lOd Hazant. 1987: Xiu ('( al.• 1')87). The essence of nonlocul theory includes
the char:u:teristic length (I) untl the "altenuution" (weighting) function (w(x». It is noted
that nonlocal spatial'lVeraging is fund'lI11entally dilli;rent from the honlOgeniz'ltion concept.
although nonlocal theory might provide a unified foundation for the homogenization
concept. w contains .1 crucial nmteri'll p'.lfameter the ch'lmcteristic Icngth which is gen­
erally inl1uenced by the spacing. size .Itld sh'lpe of inclusions (or <tggregates. libcrs). In the
event ofinhonwgeneous anisotropic materials. one could rephlce the homogeneous isotropic
attenuation function OJ(x) hya t'(Hlrlh-order allenuation tensor w"u(x).

2.3. l:'t/i·ctit·c strcss ("ImC/'!" /l1It1 ".I'!'",//('.\'is I~r .vtmill ('qllil'alt'lIn'
Let us denote by M a fourth-order tensor which ch<lracterizes the state ofd.amage and

tmnsforms the homogenized stress tensor a into the elfective stress tensor ti: ri:.

tiE1\1 ':a. (5)

For isotropic damage case. the mechanical bch'lvior of microcracks is independent of their
orientation and depends only on a scalar vari.. hle tI. Accordingly. M simply reduces to
(I -tl)l. where I is the rank four identity tensor. and (5) collapses to

(f

tiE
I
_

d
, (6)

The coellicient (I - eI) dividing the stress tensor in (6) is n reduction fnctor associated with
the umount ofd.lmage in the muteri'llfirst introduced by Kuch.lOov (1958). The value d =0
corresponds to the undam.lged st.lte. d = d,_ defines the complete local rupture (dr e [0. I».
and de (0. d,.) correspunds to a purtinlly dum.aged state. Local stresses arc redistributed to
the undam.lged material micro-bonds and therefore the effective stresses .lre higher than
the nomin;tl stn.:sses, In addition. Lelllaitre introduced the following hypothesis of stmin
cquivulence: "The strain ussodated with a d.am'lged stute under the applied stress is
cquiv'llent to the str'lin associated with its undamaged st.lte under the efTc..'Ctive stress." See
rig. I for.a schematic explunation.

R('t1wrk 2.3, t. Add('eI.flexihility. Due to the existence of microcracks. the flexibility of
a materiul increases. To see this. consider for simplicity the clastic-damage case (see Fig,
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duc to llIinocracks. respectively.

2). Let us denote hy C" the undamaged stilrness and (I - dlC" the damaged unloading
stifrness (as will be derived in eqn (21)). It is assumed that all microcracks dose upon
unloading and therefore no permanent deformation exists upon complete unloading.
Accordingly. the truly reversihle (elastic) strain is obtained by following the unloading slope
C" and is designated as r..... It is observed from Fig. :2 that the gap between point 0 and point
A is aetually the inelastic strain &" due to microcraek opening during the loading process.
See also Ortiz (llJ!:IS). 0

.1. ENERGY -BASED ISOTROPIC ELASTOI'LASTIC DAMAGE MODELS

The underlying concept of the energy-based e1astoplastic damage models presented in
this section is that damage in ~I material is linked to the history of both elastic and plastic
state variables. The framework constructed in this sedion will be extremely useful in the
development of anisotropic damage models proposed in Section 4.

The fundamental problem of the ductile plastic damage formulation advocated by
Lemaitre (I Wl4, IlJ!:IS, IlJ!:I6) is the non-optimal choice of the locally averaged free energy
potential. In particular, damage is associated only with the elastic strains and the damage
energy release rate is shown to be the elastic strain energy in Lemaitre (19!:1S). This treatment
amounts to uncoupled plasticity and damage processes, thus in a sense contradicting
experimental evidence that plastic variables also contribute to the initiation and growth of
microcracks. By contrast, a new free energy function and damage energy release rate are
proposed in this section. The damage energy release rate (energy barrier) controls the
microcrack propagation and arrest. The damage loading/unloading conditions are com­
pletely characterized by this energy barrier which is related to the local debonding energy
required to initiate or propagate microcracks. The notion of effective stress and the hypoth­
esis of strain equivalence arc also utilized.
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3.1. Thermo£Zl'namic basis. Stwin split
Tht: split of the total strain tensor into the "dastic-damage" and "plastic-damage"

parts is assumed at tht: outset: i.e.

It is emphasized that the "added flexibility" due to the existence of microcracks is already
embedded in c" and cf implicitly (see Remark 2.3.1). That is. c" (cf ) includes not only the
truly elastic (plastic) strain but also the added deformation due to active microcracks. Upon
complete unloading. however. we assume that all microcracks are closed and no residual
strain is induced by micro-defects. To introduce both damage and plasticity mechanisms.
let us consider the following locally averaged (homogenized) free energy function;

'P(c'".q.d) := (l-d)'P"(c'·.Q) (8)

where Q denotes a suitable set of plastic variables and 'P"(I:<". Q) signi fies the total potential
energy function of an undamaged (virgin) material. One often assumes (although unnecess­
ary) that the elastic and plastic potential energy functions are uncoupled; i.e. 'P"(s'·. q) :=

'P;:(I:'") + 'IJ~(Q)'

Confining our attention to the purdy mechanical theory. the Clausius-Duhem
inequality takes the form

(IJ)

for any admissible proecss. Taking time derivative of eqn (X). substituting into (<). <\llll
making use of standard arguments (Coleman and Gurtin. 1967) along with the additional
assumption that damage and plastic unloading are elastic processes. we ohtain

and the dissipative inequalities

( 10)

'P"(l(.q),i ~ 0 and ( II )

I t is clear from eqns (10) and (II) that the present framework is eapahle of accommoduting
nonlineur c1ustic response und generul plastic response. Moreover. it is noted that the
el1\:ctive stress is given by the expression

(f o'P" (1". (0ii == --- = ~ .._._.-
I-d Dr.'

Remark 3.1.1. From eqn (8) it follows that

O'P(s'·. Q. d)
- Y:= - ... 1/ -. = 'fJ"(e'.q).

v(

(12)

(13)

Therefore. we conclude thut the undamaged energy function 'P"(I:". q) is the thermodynamic
force (damage energy release rate) conjugate to the damage variable d. This is at variance
with Cordebois and SidorolT (1982) and Lemaitre (1984. 1985. 1986). who considered only
the clastic part of the damage energy. 'P~(s'). It is noted that by considering the elastic
damage energy only is physically incorrect since plastic dissipation is not properly accounted
for. Sec also Chow and Wang (1987a) for more anomalies of elastic damage energy release
ralc. []
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Remark 3.1.2. A different formulation based on an additive split of the stress tensor
was previously proposed by Simo and Ju (l987a, b). In their work, the thermodynamic
damage energy release rate was shown to be 'P"(£); i.e. the total undamaged stored energy
function with the total strain tensor £ as its argument. By contrast. the damage energy
release rate in the present formulation is 'P"(£', q) which is smaller than 'P"(£).lt is interesting
to notice that 'P"(g'. q) is actually the local counterpart of the global J-integral fracture
energy in nonlinear e1astoplastic fracture mechanics. This is not the case of the alternative
quantity 'P"(g) proposed by Simo and Ju (1987a. b). 0

3.2. Charactai=atiofl (~ldamage
A simple isotropic elastoplastic damage mechanism is characterized in this section to

describe the progressive degradation of mechanical properties of materials. Motivated by
Remark 3.1.1. we propose to employ the (locally averaged) undamaged energy function 'P"
(the damage energy release rate) to characterize the damage loading/unloading conditions.
For convenience. we define the notation ~ as

~ == 'P"(&'.q). (14)

The state of damage in the material is then characterized by means of a d'lmage criterion
g(~,. ',) ~ 0 with the following functional form:

( 15)

Here. the suhscript t refers to the value at current time tEIR;-. and r, signifies damage
threshold (energy barrier) at current time t (i.e. the radius of the damage surl~lce). If ro
denotes the initial damage threshold before any loading is applied. a property characteristic
of the material. we must have r, ~ r o• Condition (15) then states that damage in the material
is initiated when the damage energy release rate (~,) exceeds the initial damage threshold
'II' The above energy-based damage criterion is fundamentally linked to the history of both
elastic and plastic variables. A large body of current literatures, however. adopts certain
stress-based damage criteria; see. e.g. Chow and Wang (19X7a. b) (which tried to remedy
Cordebois and Sidorolf. 191(2). It is noted that a stress-based damage criterion in the
presem;e of signilicant plastic !lows is inherently inadequate for predicting realistic plastic
damage growth. To substantiate this statement, let us consider for simplicity the perfect
plasticity wupled with damage. The effective stresses arc constant and the homogenized
stresses arc decreasing; consequently. a stress-based criterion will not predict significant
damage accumulation even under large plastic deformations.

To describe the growth of microcracks and the expansion of damage surfaces, it is
necessary to specify the eqtlations of t:volution for tI and r. As was mentioned earlier.
micromechanical derivation of microcrack kinetic growth laws is currently achievable only
in tht: case of originally homogeneous, linear isotropic clastic solids without microcrack
interaction. In tht: case of general nonlinear e1astoplasticity coupled with interacting
microcracks. such micromechanical derivation is not available yet. Hence. in this section,
a phenomenological description of the kinetics of microcrack growth is attempted. For the
isotropic damage case. we define the evolution equations as

at = Jill(~t. tit . .1', a. c. fJ)

( 16)

where s is the spacing of inclusions (fibers or aggregates). a the grain size, c the microcrack
size, and II the porosity (e.g. water/cement ratio in concrete). In addition. it ~ 0 is a damage
consistency parameter which dclines damage loading/unloading conditions according to
the Kuhn-Tucker relations:

(17a-c)
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Conditions (17) are standard for problems involving unilateral constraint. If g( ,;,J,) < O.
the damage criterion is not satisfied and by condition (17c) we have Ji = 0: hence. the
damage rule (\6) implies that Ii = 0 and no further damage takes place. If. on the other
hand il > O. that is further damage is taking place. condition (17c) now implies that
g(~[J[) = O. In this event the value of Ji is determined by the "damage consistency con­
dition": i.e.

So that r[ is given by the expression

r - }r/ = max ,rl). max .;, .
t r-::( - x..11

( (8)

(19)

3.2.1. Elastic-dal1/(/ge tal/gent moduli. For isotropic ductile damage. the above char­
acterization of damage results in symmetric elastic-damage tangent moduli. In the absence
of further plastic 110w. r." == q == O. Time ditferentiation of (10) along with the damage rule
(16) and the damage consistency condition (18) then yield

(20)

where ii == 11'f'''/IV' (the etkctive stress) and. for notational simplicity. the suhscript t has
heen dropped. By taking the time derivative of elin (14), we ohtain ~ = ii: i. Suhstitution
into (20) then yields ti = C(r.•.• (I. d): i, where C(r.'·. q. II) is the clastic-damage tangent modu­
lus given hy

" [ 11hP"(r.".q) - -J
C(I: • (I, d) == (I - d) " -l/fT ® fT .

1'1:' .
(21 )

Note that C(r.". (I. d) is;1 sYlllmetric rank four h:nsor. It is often assulllcd that thc undamagcd
tangcnt modulus C" == 11~'I'''/III:''~ is constant.

3.3. ('ouflled efastofllastic damage resflonse
Once microcracks occur. local stresses are redistributed to undamaged material micro­

bonds over the etkctive area. Thus. true stresses of undamaged material points are higher
than nominal stresses. Accordingly. it appears reasonable to state that the plastic flows
occur only in the undamaged material micro-bonds by means of efl'ective quantities. In
fact. this is simply the underlying notion of the etl'ective stress concept. Therefore. the
characterization of the plastic response should be formulated in the etlixtive stress space in
terms of etfective liuantities ii and q. The homogenized stress tensor fT is replaced by the
etfective stress tensor ii in the stress space yield criterion: i.e. the "elastic-damage" domain
is defined by /(ii. q) ~ O. It is recognized that due to the existence of microcracks the plastic
!low stresses and plastic material properties degrade. Use of effective quantities in the yield
condition essentially has the net elli:ct or lowering the plastic strength and flow stresses of
materials. By assuming an associative !low rule. the rate-independent damaged plastic
response is characterized as follows:

'p _ .·?f _
r. - I. , _ (fT, (Jl UlolI' rule)

('(1

q = ;:h(ii. q) (plastic harllenin.q law)

f(ii, q) ~ 0 (yield condition)

(22a)

(22b)

(22c)

where ;: denotes the plastic consistency parameter and h signifies the vectorial hardening
function. It is interesting to notice that in spite or the normality rule assumption (22a) in
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the effective stress space ti. the How rule direction departs from normality in the homogenized
stress space a in the case ofanisotropic damage. Hence. the damage-perturbed yield criterion
and damage-induced non-associative flow rule (despite the associative flow rule in terms of
ti) are accounted for in eqns (22). Further. the loading/unloading conditions can be ex­
pressed in a compact form by requiring that

j(ti. q) ~ o. ;: ~ o. ;j(ti. q) = O. (23)

;: is determined by requiring that J = O. the so-called plastic consistency condition. Hence.
during plastic loading one has

(24)

For simplicity. we shall assume uncoupled elastic and plastic potential energy functions:
namely. 'fI"(s'. q) == 'fI~(s') +'fI;(q). Therefore. from eqn (10) we obtain

where usc has heen made of the tlow rule (22a), Thus. ;: is determined as

(~j . ('~\P" , '
(~ii ' '/,;.,; 2 . , r.

(25)

(26)

Suhstilutioll of (26) into (25) then yields ci = C'I': r.. where Crt. is the ellcetive elastoplastic
tangent modulus (a symmetric fourth-order tensor) given by

(27)

To derive the dastoplastic-damage tangent moduli. we recall that a = (I - d)ti. Time dillcr­
entialion then leads to

(28)

where use has been made of eqns (16) and (18). In addition. the time derivative of eqn (14)
along with eqns (22) yields

J - , '1' (~\P", _, .' [_ c1f (~'fI" ]
.; = a:(£-£ )+ 'q = a:s-I. a: _ - '~--"h .

~ c1a (~
(29)

Substitution of eqns (26) and (29) into (28) then renders t1 = C'I': e. Here C'I' is the
c1astoplastic-damage tangent modulus given by
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[t is obscrn:d from eqn (30) that C''' is in gent:ral a non-symmetric rank four tensor.
J',;everthelt:ss. in the particular event in which we have constant (linear) CO == t~'t''',(~Se~ and
von Mises J~-plasticity. C''' in eqn (30) is symmetric. The above coupkd elastoplastic­
damage formulation can be readily extended to accommodate non-associative flow ruks
(in the clrective stress space 0') by simply replacing I in eqn (22a) by a suitable plastic
potential Q(O'.ql.

ROllark 3.3.1. A damage-perturbed yield criterion and damage-induced non-associative
flow ruk in the homogenized stress space (1 was proposed by Dragon (1985). It is noted.
howen:r. that two different yield functions are used in Dragon (1985) to define the "genuine"
yield potential and another damage-perturbed pseudo-potential. respectively. The tangent
moduli are always non-symmetric. Moreover. the corresponding elastoplastic-damage
return mapping algorithms are rather cumbersome due to two simultaneous consistency
conditions. 0

Remark 3.3.2. For the derivation of;: in eqn (26) we have assumed that 'fI"(s", q) ==
'.'::(1:') + 'P~(q). [f this is not the case. the denominator in eqns (26) and (27) should be
replaced by the following expression:

o (31 )

Rell/ark 3.3.3. [n the previous work by Simo and Ju (1987a. b). the formulation hinges
on an additive split of the stress tensor. As a result. their c1astoplastic-damage tangent
l1\oduli C" an: always non-symmetric even with C" constant. [n addition, in the case of
nonlinear elasticity (either physically or geometrically) coupled with damage-plasticity, the
elastic and elastoplastic-damage tangent moduli (1"~'I'''(I:)!lll:~ and C"') arc too "soft" due
to the fact that the argulllent of" dilrerentiation is the total strain tensor r. (sec eqn (24) in
SinHl and Ju. 1987a; sec also Simo and Ju. 1987c for the finite deformation case). These
"son" tangent l1\oduli could lead to numerical dilliculties when large strains arc encoun­
tered. By contrast. the present forlllulation employs more robust (stitrer) clastic tangent
moduli ("~'I'''(r.'·,IJl!I''r.··~and elastoplastic-damage tangent moduli C"'. with the clastic strain
tensor I:" as the argument of difrerentiation. This advantage together with our J-integral­
like damage energy release rate (·p"(r.··.IJ}) make the present formulation computationally
and physicdly more attractive. 0

Rel//ark 3.3A..",'c/1'Cliof/ oj" '1'''(1(. (I). The specific forms of the undamaged free energy
function 't''' lkpend on the mechanical behavior and thermodynamic process of materials.
From eqn (II). it is observed that the thermodynamic forces conjugate to ii' and it arc
1"1''''1',,'' (or simply Ii) and - (I"P''/I'III, rcspectivdy. In fact. in elJn (22a). the partial derivative
is taken with respect W Ii. Therefore, it appears rational to postulate that

By comparing eqn (32) with (~2h). we obtain the rdation

(32)

h(li. q) = (33)

For demonstration purpose. let us assume that 'P"(s'·. q) = 'P:~(r.'·) + 'P~(q) and consider the
von Mi!les plasticity with linear isotropic hardening. Thus. we have d'I';:/d{~" = R(c"). with
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~p and R(~P) signifying the equivalent plastic strain and yield radius. respectively. Hence.
we arrive at lI-':~ = j;;" R(~P) d~r_ For linear hardening. R(~P) = R,,+lJ~p. with R" and ()
denoting the initial yield radius and slope. respectively. Accordingly. lI-'~(~P) = R,,~P + !(}~r~.

For other plasticIty modds. one could assume that lI-'" = j~ ii: dt and compute lI-''' incre­
mentally. On the other hand. the form of "f'~ hinges on the particular hyperelasticity model
employed: e.g. for lim:ar elasticity case. one has lI-'~(/n = ~tc: C": f.'". 0

3.4. Rate-dependent dall/age mechanism
Some experimental results (on rocks and concrete) show that the amount of micro­

cracking at a particular strain level exhibits rate sensitivity to the applied rate of loading
in a dynamic environment. Further. strain-softening and loss of strong ellipticity phenomena
associated with damage mechanisms impose numerical difficulties in finite element com­
putations. To account for rate dependency and to regularize the localization problems. a
viscous damage mechanism is presented in this section. It is noted that the structure of this
regularization is analogous to the visco plastic regularization of the Perzyna type (Perzyna.
1966). In particular. rate equations governing visco-damage behavior are obtained from
their rate-independent counterpart. eqn (16). by replacing the damage consistency par­
ameter ji by jUPcl/). Here jl is the damage viscosity coefficient. (~(g) denotes the viscous
damage !low function and q is dclined in eqn (15). With this at hand. we write

a, = jl( (pe(t}) 1I( ~,. d, ..\·, a, c. p)

" = 11('Pcq) (34)

wlu:n: (,) denotes the McAuley brackct. In the evcnt of linear viscous damage mechanism
(i.e. (het) == q), elJn (34) then takes the form

ci, = II(q)II(~,.d,.s.a.c.p)

" '" jl(i/) == jl(';,-(,). (35)

The ahove viscous mechanism is capahle of predicting retardation in microcrack
growth at higher strain rates. In addition, the inviscid lbmage characteriz'ltion can be
recoven:d by ktling ji go to infinity. On the other hand. as Jl approaches zero we obtain
the instantancous clastic n:sponse (in the absence of plastic !low).

3.5. AI il'filCfack iI/h'lIilly ant! c/ilSill.il

Although the damage models presented in Sections 3.3 and 3.4 arc isotropic. they can
be easily extended to account for the "mode I" microcrack opening and closing effects. Let
us start hy considering the spectral decomposition of the strain tensor (see also Ortiz. I9X5)

r.= L,:,p,®p,. Ip,1 = I
,··1

(36)

where 1:, is the ith principal strain and P, the ith corresponding unit principal direction. Let
Q and Q' . scparately. he the regular and positive (tensilc) spectral projection tensors
dclined as

)

Q == L P, ® P,: Q' == L li(I:,)p, ® P,
I .. I I ~-- I

(37)

where li(·) is the Heaviside ramp function. We now introduce the fourth-order positive
projection tensor (D' with componcnts

(38)

so that r.' can be expressed as (see also Ortiz. 1985)
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e' = IP' : e. I.C. I:,; (]9 )

It is observed that P' depends.on the total strain e.
With these notations at hand. eqn (10) is then rephrased to take into account the active

(opcn) microcracks under tensile extensions. Specifically. we write

('fI"
(J (I - 0'''' ): _ .

ce'
(40)

where 0'''\ == tiP ~ Ip· = tiP" P" is the fourth-order active anisotropic damage tensor. If
all three principal strains e, are tensile, then we have pc = I and o,'e! = £II: i.e. the local
microcrack is open (active) in all thret: principal directions and we recover isotropic damage
under current state. If all ej are compressive, then pc = 0 and 0"'" = 0: i.e. the local
microcrack is entirely closed (passive) under current state. Ckarly. other combinations of
tensile and compressive;: states will give rise to various microcrack opening and closing
situations.

The damage energy release rate ~ == 'P" in eqn (14) can also be modilled as follows to
accommodate ductile and brittle (tensile) material damage.

whcre f." c == .t .:f.•.•

(dUCTile)

(hrirrlcl
(41 )

Refllark 3.5.1. The ahove discussioll on microcrack closure, eqns (36) (40), is quite
similar to the proposal of Ortiz «(9X5). Ilowevn, there arc SOllle subtle dillcrelH:es between
the two formulatiolls. First. the explicit form or the positive orthogonal projection tensor
.t' in elJn OX) is more precise than that given in Ortiz «(lJX5) (sec eqll (3.60) therein).
Second. the present discussion employs the tkscription of stilfness degradation through the
active damage tensor 1)''':\ while Ortiz (!9X5) used the "added compliance" charaeteriz41tion
C' (sec eqns (3.11 )(.1.14) in Ortiz, IlJX5). Third, It' ill eqn (.IX) is a nonlinear, non-const41nt
operator associated with the current total strain tensor I:. III Ortiz (19X5), hy contrast, there
arc really two distinct orthogonal projections involved (sec eqns (.1.9) and (.1.60) therein).
Specilically, the lirst one is .t: associated with the current strain tensor 1:: i.e. 1:' .t: :I:.
The other one is OD: assOl.;iated with the current stress tensor (J: i.e. t1' == It: :t1 (see also
eqn (.1.1 X) in Ortiz, 19X7b). In general, at,' is floT eq ual to .t; . It appears that this distinction
was not made clear in Ortiz (llJX5). In addition, in a strain-driven algorithm, t1 is yet
unknown before local constitutive iteration. Hence. use of ..: introduces more com­
putational efforts. Fourth. due to the existence or two distinct orthogonal projections in
Ortiz (llJX5), cqns (.1.11)-(3.14) therein scem unclear. In particular, cqn CU3) in Ortiz
(llJX5) could be interpreted as

C' = .t; :C' : .t: . (41)

Accordingly. thc active "addcd compliancc" C' becomes a non-symmctric tensor and eqn
(3.14) in Ortiz (19X5) might be qucstionable because t1 t is not equal to .t.. :t1. In the present
proposal. on the other hand, only one orthogonal projection It· (see eqn (.IX» is needed
and no confusion ever arises. 0

4. ENERGY·BASED ANISOTROPIC ELASTOPLASTIC DAMAGE MODELS

The energy-based damage models developed in Section 3 arc extended in this section
to account for anisotropic brittle microcracking etrects. In view of the significance or tensile
extensions in brittle damage processes. proper damage characterization via tensile spectral
decomposition is employed.
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To illustrate the physical motivation of the proposed energy-based anisotropic brittle
damage model. consider the idealized situation ofa cylinder subject to unconfined increasing
uniaxial compression. The objective is to simulate the "splitting mode". By properly includ­
ing the tensile radial and hoop strains contribution to damage and screening out the
compressive axial strain contribution. the proposed mechanism would predict progressive
microcracking parallel to the axis of loading (normal to the plane of tensile lateral strains)
and ultimate failure of the specimen. This is a typical failure mode in many rock-like
materials such as concrete. Note that a damage model based on tensile stresses could not
possibly predict such a failure mode.

4. I. TIt('mlO(~rnamic hasis
The proposed damage characterization is based on the concept of effective stress and

features a simple and etTedive construction of the fourth-order transformation tensor M in
eqn (5). In fact. one could define M == 1- 0 (see also Cordebois and Sidoroff. 1982). The
damaged secant (unloading) stiffness tensor then takes the form C = (1- D)e". where Co
is the undamaged linear elasticity tensor. It is observed that the damaged stiffness C
possesses a one-to-one correspondence with the fourth-order damage tensor O. Hence. one
could equivalently define C as the anisotropic damage variable. In addition. it is realized
that :\, == Cco I.

As a point of departure. we postulate the following locally averaged free energy:

(43)

The Clausius [)uhelll inequality then leads to

(44)

Therefore. we ontain the following stress strain rdation

(45)

along with the following damage and plastic dissipation inequalities

Dlp ••1
0 /' == 11: Ii" - :'"J'- oil ;?; O.

Iq

In addition. from eqn (46) and the fact that

(46)

(47)

wc conclude that [11:' ® ro' + «(1lf-'"J/i~c)J is the thermodynamic forcc conjugate Lo the dam­
aged secant (unloading) stiffness C. This thermodynamic force physically defines the "aniso­
tropic damage energy release ratc" and will be used to characterize damage evolution.

In particular. we shall assumc that lp".1 is linear in 0 (or C); e.g.

ll'pAq. C) == [(1- 0): I]lf~(q) (49)

where \P~(q) == ."ll'~(q). the undamaged plastic free energy potential. Accordingly. we have
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(~'flpJtc = If;(qlC' '. Equation (4:-\) can then be rephrased as

(50)

4.2. Characteri=atiof/ 01' hrittle damaqc
To account for the nature of irreversibility during microcracking processes. a damage

criterion in terms of the anisotropic damage debonding-energy release rate ( - Y) is proposed
as follows

9 == G( -Y.s.a.c.p)-rr:::; 0 (51 )

where Gis a function of the arguments. The damage process is then characterized in terms
of the following irreversible. dissipative equations of evolution

Ii ~ O. .£/ ~ O. liq '== O. (52)

Equation (52) can be regarded as the Kuhn Tucker wnditions of the following "principle
of maximum damage el1l:rgy dissipation": "For a given (ocal strain history. the actual
damagl.:d modulus C is thl.: modulus that rl.:nders fIIl1Xiflll/f11 damagl.: energy dissipation".
This principk is analngous to thl.: prineipk of maximum plastic dissipation.

To propl.:rly include the anisntropic d~lI11agl.: enl.:rgy rdeasc rate - Y in thl.: damage
critl.:rion (51) and thl.: damage l.:volulion l.:quations (52). it is l.:sscntialto ddinc the charac­
teristic damagl.: ml.:asurl.: ~ such that

(53)

wherl.: ID' is ddinl.:d in l.:qn (3X). hlr an isotropic linl.:ar daslicity tl.:nsnr C". this warrants
thl.: following ddinition of ~

{
(~C ;.: I " }

" = If'" . C' '1(' + If'' I I - ) I' [P' C"ll' 1'1 + )" C . [lTD I C"ID 'I' C
" - ~. . •• I' 61\Ci' . 2G '~l ,. . .,

(54)

in which c, is thl.: ith unit base tensor of thl.: identity tl.:nsor I. and;': and G arl.: thl.: bulk and
shl.:ar moduli. rl.:spl.:ctivdy. With this notation at hand. l.:qn (51) is rl.:cast as follows.

q == rJ( ~. .I'. 1I,C. p)- r, ~ O. (55)

In addition. Wl.: ddinl.: II == (Yii(~~ and i, == lill. Frollll.:qn (55). it is oOsl.:rvl.:d that if == ~II in
the l.:vent ofdamage loading. Hence. we obtain Ii = ,;. Thl.: anisotropic damage (microcrack)
evolution equation (52) then becomes

(56)

It is emphasized that only tensile extensions in the princip~d directions contribute to micro­
crack growth according to cqn (56). Physically. this trl.:atment corresponds to anisotropic
(orientl.:d) brittll.: mierocrack propagation. Clearly. the crucial quantitil.:s arl.: ~ and P '.
Note that (d/dt)(P ": r.) # P' :cowing to the nonlinear nature of II'.

Remark 4.2.1. The anisotropic damage evolution ruk (52) can hl.: viewl.:d as an extension
of an earlier proposal in Ortit (IYX5) (for mortar). Thl.:rl.: e"ist. nevertheless. several sig-
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nificant differences between the two formulations. which are as follows. (i) Ortiz (1985)
assumed that the rate of irreversible (plastic) deformation is coaxial with the total rate of
inelastic deformation (consisting of contributions of increasing damage and increasing
permanent deformations). This assumption is not utilized in the present formulation.
(ii) Ortiz's (1985) formulation focused on the rate of "added compliance" tensor while the
present proposal focuses on the rate of "damaged secant (unloading) stiffness" tensor. It
is emphasized that the two procedures are not equivalent. (iii) The "perfectly brittk" and
"plastic microcracking" damage models in Ortiz (\985) are really stress-based. That is. the
damage criterion and damage flow rule are based on the current stress tensor (0" or u -) ;
see eqns (3.30). (3.3~). (3.4\). (3.47) in Ortiz (1985). [n particular. plastic (permanent)
strains do not contribute to the damage criterion (!>(u.,tl in Ortiz's models. As previously
discussed in Section 3.1. stress-based damage criterion is inherently inadequate for coupled
damage-elastoplasticity when plastic deformation is significant. 0

Remark 4.1.1. Within the present context. plastic response can be characterized inde­
pendently from the damage evolution in terms of dfective stress quantities exactly as in
Section 3.3. 0

Remark 4.1.3. A rate-dependent anisotropic damage mechani;-;m can be constructed
analogous to the formulation proposed in Section 3.4. In essence. we havc the fi.1lILnving
evolution equations (see eqn (34):

(57)

o (5X)

Remark 4.1.4. The "mode I" micronack opening and dosing mechanisms Gin be easily
accommodated within the proposed anisotropit.: d:llllage framework. !'"irst. we dctine the
"total stiffness loss tensor" as

J
.'

C" =.; (-(~) d/.
n

(59)

Then we ddine the "at.:tive stiffness loss tensor" C~C, (due to open micrnaat.:ks) .:nd the
"active damaged secant stiffness tensor" C"" as follows:

c:~., == Jt t C'p t

The stress/dastk-strain relationship then t,lkes the form

0" = C·,C
' : 1'.' •

(60)

(61)

(6:!)

If all three principal strains I:, arc tensile. then we have C'c' = C. On the other hand. if all
I:, arc compressive. then C'CI = e"; i.e. the local microeral:k is entirely closed um!l.:r l:urrent
state. It is noted that Ortiz (19X5) prop(lsed similar tn:.ltment to accommodate the ,Ktive
"added compliancc" tensor. The results of th~ two treatments. however. are not equivalent
since the inversion procedure destroys the equivalency. 0

Remark 4.:!.5. Th~ anisotropie damagc mod~l presentcd in this section is has~d on
tensile brittle failure mode. For som~ hrittle mat~rials such as concrete. however. hoth
tensile and compressive failure modes can occur. To accommodate this phenomenon, eqn
(56) can he modified, following an approach in Ortiz (1985) (see eqn (3.18) thcrein). as
follows to account for both tcnsile and comprcssive strain contributions:
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(63)

where the superscripts "+ " and "- " signify the tensile and compressive damage evolution
quantities, respectively. In addition, P == 1- P -. Therefore, tensile and compressive
microcrack initiation and growth can develop simultaneously and separately (at different
rates).

Remark 4.2.6. Due to anisotropic damage evolution, an originally isotropic material
becomes fully anisotropic, and the associated Poisson's ratio becomes a second-order
anisotropic tensor.

5. COMPUTATIONAL ALGORITHMS FOR DAMAGE MODELS

Numerical integration algorithms for the proposed elastoplastic-damage evolution
equations are systematically explored in this section within the context of the finite element
method. Use of the "operator split method" leads to a class of simple and cllicient consti­
tutive algorithms. In particular. new three-step operator split algorithms arc presented for
the proposed damage models. Strain softening and localization issues concerning damage
models arc also addressed.

5.1. If/riso'd isotropic d(/ft/{I.I/l· a(cjorit!llll
We tirst summarize the locally averaged elastoplastic-tlamage rale constitutive equa­

tions.

t;;, 0,

I: = V'u(t)

ci, = Jill

" = Ji
'y(~{,r,) ~ O. Ji'y(~{,r,) = ()

!
cif

Ii!' = ;: ... _(0'. q)
((1

q = J:h(O'.q)

;: ~ o. flO'. q) ~ o. ;:/(0'. q) = 0

(64)

where ~ is the damage energy release rate.
From an .Ilgorithmic point of view. the prohlem of integrating the evolution equations

(64) amounts to updating the basic v'lriabks {(1. d.I:". q) in a 1~lshion consistent with the
constitutive model. It is important to realize that during this updating process the history
of strains I -+ £ == V'U(/) is assumed to be given.

Equations of evolution (64) arc to be solved incrementally over a sequence of given
time steps [In. In • t1 c IR •. 11 = O. 1.2•.... Thus. the initial conditions for eqn (64) arc

(65)

In accordance with the notion of operator split, we consider an additive decomposition of
egn (64) into the following clastic. plastic. and damage parts.
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Elastic part

i = VSiJ(t)

Plastic part

i=O

Damage part

i=O

{
=H. ..,

d= 0
iff g, = g, = 0

otherwise

itT g, = g, = 0

otherwise

cz'I'''
c1 = (I-d) ~:i

C& -

if = 0

q=O

i P = 0

q= O. (66a~)

It is noted that the three columns of (66) do indeed add up to eqn (64). in agreement with
the notion of operator split (see Chorin et al., 1978). Further. the first two columns of eqn
(66) define the classical c1astoplastic problem (with damage variable d fixed) and the
corresponding computational algorithm reduces to the elastic predictor/plastic corrector
scheme. In what follows we give a step-by-step efficient integration procedure.

5.1.1. Elastic predictor. An algorithm consistent with problem (66a). referred to as the
"elastic predictor" in the sequel, is given by the following process.

(i) Strain update. Given the incremental displacement liekl Un" I, the strain tensor is
updated at Gauss points as

Cn 'l = C"+VSU,,, I, (67)

(ii) Elastic trial stress. By merely performing fUIll:tion evaluation (no iteration), we
obtain

(6X)

(69)

5.1.2. Plastic corr('ctor. To develop an algorithm consistent with the plastic part (66b),
the plastic yield condition is checked first.

(iii) Check for yielding

{
~ 0 elastic => go to step (v)

(a~n:II' ~n:II). .f q > 0 plastIc => return mapping.
(70)

(iv) Plastic return mapping corrector. In the case of plastic loading. predictor stresses
and internal variables arc "returned back" to the yield surface along the algorithmic
counterpart of the flow generated (66b). One typically employs either the closest-poi nt­
projection or cutting plane algorithms (sec. e.g. Simo and Ju. 1987a. b). Once the plastic
consistency condition (in effective stress space) is enforced, state variables at the end of
plastic corrector phase become

{-I P 1
C1n ... I • en' en +- I • q/J + 1 i . (71 )

It should be noted that all existing return mapping algorithms for elastoplasticity become
directly applicable (with no modification) in our elastoplastic-damage formulation.

SAS 25:7-H
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5.1.3. Damage corrector. To complc:te the product formula algorithm. it remains to
develop an algorithm consistent with the damage part (66c) which operates on initial
conditions (71) to produce the final state {O',. I. d,. ,. e~. I. q". I:"

(v) Damage evolution. Compute '"damage energy release rate" .;,. 1 according to

(72)

where e~ .. , == e" .. I -e~+ I' The damage variable d,,~ 1 and damage threshold r" .. 1 are then
given by

if~,,+,-r,,~O

otherwise
(73)

(74)

(75)

It is emphasized that no iteration is required in the damage correction phase. Although
plasticity and damage arc coupled in rate elJuations (64), the algorithmic treatment renders
uncoupled plasticity and damage algorithms. The simplicity and efficiency of the overall
procedure an: noteworthy.

5.2. Rale-dependent isolropic damage aZijorilhm
The ratc-dcpendcnt damagc mechanism described in Section 3.4 can be elliciently

implemcnted to obtain consistent and accurate incrcmental solutions. In this section. a one­
parameter family of unconditionally stahle integration algorithm is presented. Let us assume
that damage loading is taking place: i.e. g == ~" f 1 - r" > O. By applying the generalized mid­
point rule to eqn (35) we have

r" " == :xr", 1 + (I - ex )r" : d" " = d, + ll.JI" .. , g" .. ,//" I ,

(76)

where :x E [0. I) and ll.Jl" .. , == JI{t" .. , - I,,). The amount of expansion experienced by the
damage surl:lCe during the time step is t:omputed from (76) by solving for r" .. 1 :

I + :xll.Jl" "
(et ~ ~). (77)

From elementary numerical analysis. we note that algorithm (76). (77) is unconditionally
stable for y. ~ ~ and second-order accurate for :x = ~. Typically. the value ,y' = I cor­
responding to a bat:kward-Euler finite difli.:rence scheme is employed. We will restrict our
attention to this case in the ensuing development. The elastic predictor and plastit: corrector
are identical to the previous derivation shown in Section 5.1. Only the damage corrector
phase needs modification to account for rate dependency. The numerical integration scheme
for rate-dependent damage corrector is summarized for convenience in Table I for the fully
implicit case (:I. = I).

It is interesting to examine two limiting values JI --+ 0 and JI --+ 00 of the damage viscosity
coellicient. and their effect on the evolution of r" .. 1 and g" .. I.

(a) For JI --+ 0 (so that ll.JI" .. 1 --+ 0), we obtain r" .. I --+ r" and g" .. 1 --+ (~" .. 1 - r,,). Hence.
no further damage takes place during the time increment and (in the absence of plastic
now) one has instantaneous clastic response.

(b) For JI--+ 00 (so that ll.JI" .. I--+ :0), we have r"+I--+~'+I' 9,,+1--+0, and ll.d"+1 =
ll.~" .. I fI" .. I' This situation corresponds to the rate-independent damage character-



On ,n.:rgy-based coupled dastoplastic damage theories

Table I. Rate-dependent damage corrector algorithm

(1) Compute current "damage energy release rate" ~•• , according to

~u ,;: '1'0«. ,.tt.. ,).
(:!) Check the damage loading criterion: g(eu .. rJ ;: ~•• ,-r. > O?

YES: rate-dependent damage loading. Proceed to (3).
NO: no further damage within this time step. Exit.

(3) Compute r•• , and !ill•• ,9•• I:

!ill•• , = Il!it•• ,

[r. + !illu ' ~•• .J
r1f

+ I = [I +6~.. + d

(4) Update damage parameter and stress:

!idH , = !ill•• ,9•• ,H•• ,

d•• , = d. +!id•• ,

<1•• , = (I-d•• ,)a•• ,.

821

ization. Hence. as 11 -+ xc we recover the inviscid damage model characterized in
Section 3.2. Note that since 0 ~ 11 ~ 00 we must have rn ~ rn + I ~ ~n+ I ; namely, the expan­
sion of the damage surface is properly bounded between the instantaneous elasticity and
Ihe inviscid damage limit.

5.3. Anisotropic damayc afC/oritlmt
The operator splitting methodology devdoped in Section 5.1 can be immediately

extended to accommodate anisotropic brittk damage mech..tnism outlined in Section 4.2.
The three-step operator split is as follows.

1i=0

Damage partElastic part Plastic part

Ii = VSiJ(t) 1i=0

(: = 0 (:=0

;=0 ;=0

a = C:1i a= -C:IiP

liP = 0 . ..iJf_
£P = A;,:-(O",q)

(,0"

q=O q = ;:h(a,q)

liP = 0

q = O.

iff 9, = 9, = 0

otherwise

iff g, = il, = 0

otherwise

(78a-<:)

Computationally. the only modification needed concerns the anisotropic damage corrector,
now involving an eigen-calculation to compute the positive (tensile) projection of the strain
tensor.

5.3.1. Anisotropic damage corrector. Step (v) outlined in Section 5.1 is modified as
follows.

(v) Damage evolution
(a) Perform the spectral decomposition:

J

£n+ I = I f.iPj <8> PI'
,-I

(79)
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(b) Compute Q.+ 1 and Q.~~ I :

Q. - I = L p, ® p, :
I'"'" 1

3

Q:_I = L H(r;,lp, ® p,.
1= 1

(80)

Recall that H(') denotes the Heaviside step function.
(c) Compute the projection tensor p.+_ I and the elastic tensile strain tensor e~: I :

(81 )

(d) Compute the damage energy release rate ~... I according to eqn (54).
(e) Update anisotropic secant (unloading) stiffness modulus according to eqns (55).

(56):

ife(~... ,.s.(l.c,p)-r. ~O

otherwise
(82)

(f) Update the damage threshold r... 1 and Cauchy stress a. ~ I :

(7"1-1 =C"I-I:g~+I'

(83)

(84)

Re/l/ark 5.3.1.1. A ratc-dependent anisotropic damage algorithm can be constructed
paralkl to the rate-dependent isotropic damage algorithm in Tabk I. 0

5.4.•\'traill .l'IIjimill.l/ af/(lloCllli;;atioll

It is now well known that there are uni4ueness. wdl-posedness and numerical con­
vergence probkms associated with apparent "strain-softening" computations due to thc
loss of material strong dlipticity. As a result. finite dement computations exhibit spurious
mesh sensitivity when the mesh sil.e goes to infinitesimal. These numerieal dillieulties may
be overcome by means of the nonlocal damage theory (sec. e.g. Eringen and Edelen. IlJ72:
Baxant et ill.. IlJ87: Xia et al.. IlJX7). or viscous damage model presented in Section
3.4. The non local damage characteril.ation is physically very appealing at the microscale.
However, experimental determination of the characteristic length I and the weighting
function (J) may be major problems. Recently. nevertheless. Bazant and Pijaudier-Cabot
(llJ88) proposed an interesting method to determine the characteristic length from exper­
imental data. Further, nonlocal computation is to some extent incompatible with local finill:
element cakulation and further enhancement in consistency and accuracy is needed. On
the other hand. the proposed viscous damage mechanism is not only suitable for accom­
modating dynamic rate effect but also olfers a possibility for controlling loss of ellipticity.

In particular. following a line of argument due to Valanis (llJ85). it can be shown that
a viscous damage model of the type (35) satisfies the positiveness condition in Valanis
(1985) and therefore leads to well-posed initial-value problems. To this end, we take
differentiation of the relation a = (I - eI)a and use e4n (35) to obtain

a = (I-el)a-cia

= (I -el)C:P: £ - JI<!I)fla. (85)

We recall that t1 = clfl"(g<. q)/cs< and C"P is the effective c1astoplastic tangent stiffness given
in eqn (27). At a state defined by {e, eI. r}. for two different stress rates a I, a z, and two
dilTerent strain rates £1 and f.~. it follows from (85) that

(86)

provided that the undamaged elastoplastic tangent modulus L"P is positive definite and
eI < I. Thus. the material is positive in the sense of Valanis (1985).
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In recent years. the applicability and limitations ofdistributed damage models to brittle
materials such as concrete have been questioned by some researchers (see. e.g. Read and
Hegemier. 198.t). The fundamental question is to what extent the softening that is observed
experimentally (for a boundary-value-type sufficiently large specimen) is a manifestation
of local material behavior or. on the contrary. a global structural (boundary-value) effect
brought about by fracture (macrocracks) and strain localization (such as shear band
formation). To answer this question. we really should separate the issue into two parts. The
first part concerns the boundary-value-type experimental testing of specimens. The second
part focuses on the local constitutive behavior (not boundary-value problem) within the
framework of the unit cell-based "'meso-mechanics". the concept of characteristic length.
together with the self-consistent method or homogenization technique. It is noted that. in
the case of concrete. the characteristic length is approximately three times the aggregate
size according to Baxant and Pijaudier-Cabot (19S8). and a unit cell contains approximately
30-100 aggregates according to Krajcinovic and Fanella (1986).

For a sutlkiently large (bigger than the unit cell) experimental specimen. the observed
force--displacement curve indeed represents the global boundary-value-type response. rather
than the local stress-strain behavior of a material element. In fact. in this boundary-value
problem. there arc three factors contributing to the apparent softening which is observed
experimentally. These factors include: (a) the nuclcation and growth of many distributed
microcracks in the specimen, leading to local material softening in the sense of unit cell
based meso-mechanics; (b) the strain localization phenomenon. resulting from the loss of
ellipticity and stability of matcrials (sec. e.g. Ortiz. 1987b); (c) the formation and propa­
gation of global boundary-value-type macrocracks which arc the direct products of
microcrack cllalescence in the spccimen. Based on the above statements. this writer agrees
with those researchers who concluded that true material softening is {t'.I'.I' than the apparent
global softening observed in experiments. Therefore. strictly speaking. the global force
displacement curve should not be direl·tly interpreted as the local stress strain curve of a
ilia teria I elemen t.

On the other hand. within a statistically representative unit cell (meso-mechanics).
distributed ll1ierocr:u.:ks and strain softening (at the meso-scale) do make sense since dis­
tributed mierm;raeks (within the unit cell) do induce stifrness degrad:ltion and strain soften­
ing. One can f:letually apply the self-consistent method or the homogenization technique
to compute the degradation of elastic and plastic material properties of a unit cell. These
computations :Ire. of course. related to the scale of the characteristic length of a material.
Further. the so-called "'sizedl'ects" (sec. e.g. Sabnis and Mirza. IlJ7lJ; Bazant, IlJX4; Fanella
and Krajcinovic, IlJ8X) arc also closely related to the scale of characteristic length.

In summary, distributed damage models arc suitable for modeling distributed (many)
microcracks and material n:sponses (not necessarily softening) in structural members before
macrocracks become globally dominant. After the microcracks coalesce to form macro­
cracks, om: can switch to fracture mechanics approaches provided that one takes into
account: (i) the damage process zones in front of macrocracks (i.e. the macrocrack­
microcrack interactions). and (ii) the damage-induced stifrness degradation and anisotropy
in many (distributed) unit cells. Without these accounts, the resulting fracture calculations
arc not realistic nor meaningful. Conversely, direct application of a distributed damage
model to solve a problem involving a single dominant macrocrack (in a boundary-value
setting) is not likely to yield accurate results regarding macrocrack geometry and macro­
crack opening displ:tcemenl. Finally. distributed damage models arc not directly suitable
for predicting localization instability in materials.

6. APPLICATION TO CONCRETE AND MORTAR. EXPERIMENTAL VALIDATION

Concrete is a three-phase cementitious composite material composed of aggregate.
mortar and interface zone (sec, e.g. Mehta, IlJR6). Each of the three phases is itself multi­
phase in nature. For example. each aggregate particle may contain several minerals. and
mortar is actually a mixture of cement paste and sand particles. Further. concrete has
microcracks in the interface zone even before a structure is first loaded due to bleeding.
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shrinkage. cemen t hydration heat. etc. The interface zone between the aggregate particle
and mortar is ty pically 1O~50 J.lm thick around large aggregates and is in general weaker
than either aggregate or mortar. Due to this strength-limiting phase. the strength ofconcrete
is considerably lower than that of mortar or aggregate.

Under compressive loading. microcracks initiate and propagate in the interface zone
at low stress level. signifying a low energy barrier qJ" in the interface. These microcracks
become unstable and propagate until they are arrested by cement paste matrix which has
a higher value of debonding (damage) energy barrier qJ". When the stress level is above
50~ 0 of the ultimate strength. matrix (mortar) microcracks initiate and gradually spread
until they join the microcracks originating from the interface zone. The coalesced crack
system then becomes continuous. The crack system may be arrested by aggregate. but may
also lead to rupture of local materials. Most stabk microcracks arc of the size of aggn:gate
Llcets. Hence. aggregate size is closely related to the characteristic length of concrete.
Considerable damage energy is needed for the formation and e.\tension of matrix micro­
cracks under a compressive load. By contrast. unl!t:r tensile k)ading much less damage
energy is required to initiate and propagate microcracks in matrix and interface zone.
Therefore. concrete fails in brittle fashion in tension mode and is much tougher (more
ductile) in compression failure mode. It is also recognized that plasticity (permanent defor­
mation) in concrete is primarily due to the extended microcrack surfaces which are not
completely closed even under unloading.

Without resorting to multi-phase mi.\ture theories and models. we employ either
isotropic or anisotropic damage models in the following seL·tions to simulate minocrack
initiation and growth in the interface zone and mortar matrix of concrete. Experimental
validation invllives hoth rate-independent and rate-dependent concrete testing data. In
additilH!. microstructural factors such as the average aggregate size/spacing ratio are con­
sidcred in the microcrack kil1l:tic equations.

().I. !:"l'cri/llc//(all'(/lida(io// 01' isotropic dllfllll.lJC /IIudt'!

The isotropic energy-hased damage mechanism developed in Section :I is specialized
in this seclion to capture hasic features of the behavior of concrete and mortar within
hounds of experimental error. A two-invariant cap plastil:ity model originally proposed hy
DiMaggio and Sandler (1971) (see also Sandler ('( al.• 197(l; Sandler and Ruhin. 1979:
Simo ('( al.• 19XX) is employed to aecount for the plastic hehavior of concretc. In view of
the present shortcomings of experimental techniques and the wide scattering in availahle
experimental data for concrete and mortar. a precise quantitative evaluation of the pre­
dicting capahilities of a given constitutive model docs not seem to he warranted. Instead.
it is felt that an overall qualitative reproduction of the main features of material behavior
should playa dominant role in material modding.

In particular. the kinetic law of microcrack growth, eqn (16) reduces to the following
form:

a= (k+ l)~Ft(~.c.p) (S7)

where k == (l!s is the average aggn:gate size/spacing ratio. Note that if aggregates arc
infinitely far away from one another, then k is O. On the other hand. if a!!gregates arc in
contact. then k is I. The bigger k is, the higher the aggregate/cement interface area density
is and hence the faster the microcrack density grows. Certainly. eqn (87) is not a micro­
mechanical kinetic cquation. For exponentially growing progressive damage. thc evolution
funl:tion /7 is assumed to be

-. ~o(l-A) ..
H(<;.c.p) == ---~', +ABexp [B(<;o-<;)].

<;-
(88)

Here A and B are characteristic material parameters (implicit functions of c and pl. and ~Il

denotes the characteristic initial damage threshold. These parameters can be estimated in
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a systematic manner from suitable experimental data. The average aggregate size/spacing
factor k is taken as 0.7 for the following concrete specimens.

6.1.1. Colorado concrele dulU. The data for the following examples are taken from the
well-documented experimental program conducted at the University of Colorado (see
Scavuzzo et af.. 1983) on a systematic three-dimensional testing of concrete cr: ~ 4 ksi).
The program consists of six major series of non-conventional multiaxial cyclic stress-strain
curves. It is noted that replicate tests were run for some experiments. which enable us to
assess the relative consistency of experimental data. The numerical results reported below
not only include fitting of the model to complicated 3-D stress paths but. in addition.
predictions of material behavior obtained by exercising the model against experimental
results.

Circular slress path lesls. Tests 3-3 and 3-4 arc replicates concerning the following
loading paths. The specimens are first subjected to hydrostatic monotonic loading to a
specified deviatoric plane. followed by deviatoric loading along the triaxial compression
path until completion of the specific circular path. The model parameters are obtained by
optimal fitting with respect to test 3-3. These model parameters are then employed in the
subsequent simulation intended to predict the behavior observed in the replicate test 3-4
under significant experimental data perturbations. In spite of considerable data corruption.
good overall predictive capability of the model is observed. as illustrated in Figs 3 and 4.
To demonstrate the dl"cct of the aggregate size/spacing factor k on damage growth. three
hypothetical k values (k = n.l. n.5. n.9) arc further empillyed to simulate test 3-3; see Fig.
5. It is clear that as k increases. microcrack density increases and therefore stress response
degrades.

Cyclic simple shcar Icsl.l'. Tests 2-3 and 2-4 arc inlelllkd to explore concrete response
to deviatoric simple shear cycks with stress n:Vl:rsal ahout the hydrostatic state. Material
parameter estimation is performed wiLh respect to ll:st 2-4. and prediction is exen:ised for
test 2-3 (replicate). The results arc shown in Figs (I and 7. The overall qualitative agreement
between simulations and experiments is salisfadory.

6.1.2. Ulliaxial COlllllrC.l'.\·iol/ 11'.1'1.1'. In this example. we perform two replicate uniaxial
unwnllned compression tests of mortar (with r ~ 12 ksi). Thl: composition of mortar is
as follows: Cellll:nt 64Y g. wata (Y5 g. sand 150 g. plasticizer Y.I 1111. Ottawa sand with a
fineness modulus of 2.11 is employed. The gradation is as follows: 33.33'1u rl:tained on sieve
gauge 30. 77.77% retainl:d on sieVl: gauge 50 and 100'Yt. rl:tail1l:d on sil:ve gauge 100.
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Fig. 3. Comparison of the e~perimental and isotropi( simulated (tilled) data for Colorado concrete
test 3-3.
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Fig. 4. Comparis(ln of the e~perimental and isotropic simulated (predicted) data for Colorado
concrete test 3-4.
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hg. 5. Delllonstration of the clrect of the aggregate size/spacing factor k on the damage growth
and stress response for test J.J.
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Fig. fl. Comparison of the e~rerimental and isotropic simulated (filted) data for Colorado concrete
test 2-4.
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Fig. 7. Cl1l11parisl1n "f th.: .:~p.:ril11.:ntal and isolropi<: simulated (predi<:tedl data rllr Colorado
<:llTKret.: test 2-3.

i\laterial parametns arc obtained hy optimallitting with respect to test "M I" and pn:dictil'n
is carricd out for test "1\[2"; sce Figs Rand lJ. The clrcct of the inclusion size/spacing factor
k (sand concentration) on damage growth can he seen again from Fig. 10 in which thn:e
hypllthctical k valucs (k = 0.1.0.5.0.')) arc employcd to simulate tcst "M I".

(1.2. I~"pcrill/I'f/(til ('(//it/(/(iml or I'(/(I'-t/c"('1/{/Cf/( iso(ro"ic dlllllll.l/l' model

Two dynamic unia.xial compression concretc tests (Suaris and Shah. 1')lO. IlJX4) arc
cOllsidnnl in this scction hascd on the rate-dependent isotropic damage algorithm given in
Tabk I. Two dill'crcnt constant strain rates arc employed: fast loading (I: = O.OXX sec I)

;lIld slow loading (I: = 1.01' - (I sec I). Thc static uniaxial compressivc strength is eslimall:d
[ll he (I.X ksi.

Figurc II shllws cxpcrimcnlal and simulated results at two strain rales. Good quali­
tativc and quantitative agreement belween the modd and the cxperimental data is ohlaincd.
Thc rate cnhanccment of stress responsc due to thc viscous damagc mcchanism is dcarly
dcnlOnstratcd. That is. growth of microcracks is retarded at higher strain rates.
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Fig. X. Comparison of the c:'tpcrimental and isotropic simulated (filled) data for unia~ial com­
pression mortar test "M I".
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Fig. 9. Comparison of the e."tperimental and isotropic simulated (predicted) data for unia."tial
compression mortar test "\12".
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Fig. II. Comparison of the e."tperimental and isotropic simulated dynamic stress ~strain curves for
unia."tial compression test of concrete specimens.
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6.3. Experimentalmlidation of anisotropic damage model
The fourth-order anisotropic damage mechanism presented in Section 4.2 is employed

next to simulate anisotropic damage growth in mortar. We recall from eqn (63) in Remark
4.2.5 that tensile and compressive strains can independently contribute to microcrack
evolution. The uniaxial unconfined compression mortar tests previously considered in
Section 6.1 are taken as examples again in this section. Under uniaxial compression. the
fourth-order anisotropic damage mechanism reduces to an orthotropic damage mechanism
and the reproduction of the "splitting mode" of cylindrical specimens is sought.

Since the tensile strength f; is approximately one-tenth of the compressive strength f:'.
it appears reasonable to assume that the compressive microcrack growth rate (in the axial
direction) is approximately 10% of the tensile (mode I) microcrack growth rate (in the
lateral direction). As a consequence of the orthogonal eigenprojections (P"" and P -) and
different growth rates. microcracks develop in the lateral and axial directions progressively
and independently. In particular. microcracks form rapidly along axes parallel to the axis
of loading. reduce the lateral stiffness gradually. and ultimately lead to the splitting failure
mode. Experimental and numerical results for tests" M I" and" MT are shown in Figs 12
and 13. In addition. the apparent Poisson's ratios for tests ,oM I" and "MT are displayed
in Figs 14 and 15. It is emphasized that microcrack growth and stiffness degradation in the
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Fig, I~. Comparison of the experimental and anisotropic simulated (tilled) data for uniaxial
compression mortar test "M t",
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Fig, 13. Comparison of the experimental and anisotropic simulated (predicted) data for uniaxial
compression mortar test "M2".
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Fig. 14. Apparent Poisson's ratio for the nHlrtar ll'st "M I"
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lateral direction is much much faster than that in the axial direction due to our anisotropic
damage mechanism.

6.~. Experimental m/idacion of rate-dependent anisotropic damage model
We re-examine the rate-dependent concrete tests previously discussed in Section 6.2

by a rate-dependent anisotropic damage model (see Remark 5.3.1.1). Again. microcracks
develop rapidly along axes parallel to the axis of loading. and the splitting failure mode is
obtained. Experimental and numerical results for two different rates (c = 0.088 sec- 1 and
i = 1.0e - 6 sec - 1) are shown in Fig. 16. The capability of the proposed mechanism
to simulate rate dependency and "splitting modes" of cylindrical concrete specimens is
noteworthy.

7. CLOSURE

A number of energy-based isotropic and anisotropic damage models have been pro­
posed in this paper to characterize microcrack initiation and growth in ductile and brittle
materials. Thermodynamic basis. general nonlinear response. strain rate dependency. dam­
age threshold. damage kinetic law. microcrack opening and closing. coupling of damage
and plasticity. and anisotropic (brittle) damage mechanism have been presented within the
general framework of damage mechanics. unit cell and homogenization concept. Damage
initiation and propagation arc linked to the (locally averaged) "total undamaged strain
energy" '11"(1:". q). which is checked against the debonding energy (current damage threshold)
required for unstable microcrack growth. It is noted that in the current literature damage
models arc either simply elastic-damageable or containing improper elastoplastic-damage
thermodynamics and mechanisms.

Another essential purpose of the present work is to demonstrate that the proposed
classes of elastoplastic-damage constitutive equations arc well suited for large scale com­
putation in spite or their sophistication. Usc of the operator splitting methodology leads to
three-step integration algorithms which. in ;tddition to isotropic and anisotropic damage.
arc capable or accommodating general elastic plastic response.

Experimental validation of the proposed models against concrete and mortar specimens
is also given. We observe good qualitative and quantitative agreement between experimental
data for concrete and mortar and the proposed models. In particular. softening behavior
is well captured. Micromechanically based damage theories will be objectives or our future
research.
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