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Abstract-—Novel energy-based coupled elastoplastic damage theories are presented in this paper.
The proposed formulation employs iereversible thermodynamics and internal state variable theory
for ductile and brittle materials. At variance with Lemaitre’s work on damage-clastoplasticity, the
present tormulation renders rational thermodynamic potential and damage energy release rate. In
contrast to previous work by Simo and Ju (featuring an additive sphit of the stress tensor), current
formulation assumes an additive split of the strain tensor. It is shown that the “strain sphit” damage-
clastoplasticity formulation leads to more robust tangent moduli than the “steess sphit™ formulation.
The plastic flow rule and hardening taw are characterized in terms of the effective quantities:
viz. the effective stress space plasticity, This mechanism is both physically well-motivated and
computationally efficient. Further, a fourth-order anisotropic dantage mechanism is proposed for
brittle materials, Rational mechanisms are also presented to account tor the microcrack opening
and closing operations as well as the strain-rate dependency of microcrack growth.

Edlicient computationad algorithms for proposed clastoplastic damage models are subsequently
cxplored by making use of the “operator sphitting”™ methodology. In particular, new three-step
operator sphit algonthims are presented. Appheation is made to a class of invisetd and rate-dependent
cap-damage models tor concrete and mortar. Experimental vadidations are also given to illustrate
the applicability of the proposed dimage models.

L INTRODUCTION

The inclastic behavior of the mechanical constitutive responses of engineering malterials is
in general related to the irreversible thermodynamic processes involving encrgy dissipation
and stiffness variation due to physical changes in the microstructure. Some commonly
employed inclastic theories include, for instance, viscoclasticity, plasticity and damage
mechanies. In the past two decades, in particular, the damage mechuanics approach has
emerged as o viable framework lor the description of distributed material damage including
material suffness degradation, microcrack inttiation, growth and coalescence, as well as
damage-induced anisotropy, ete. Damage mechanics has been applied to model creep
damage (Hult, 1974; Kuachanov, 1958, 1981, 1984 Krajcinovic, 1983a; Leckic and
Hayhurst, 1974 Lemaitre, 1984: Murakami, 1981 ; Rabotnov, 1963), fatigue damage
(Chaboche, 1974 Lemaitre, 1971, 1984 Marigo, 1983), creep fatigue interaction
(Lemattre, 1984 ; Lemaitre and Chaboche, 1974 Lemaitre and Plumtree, 1979), clasticity
coupled with damage (Cordebois and Sidorofl, 1979 Ju er al.. 1989 Kachanov, 1980,
1987a.b; Krajeinovic and Fonscka, 1981 Ortiz, 1985; Wu, 1985), and ductile plastic
damage (Cordebois and Sidoroff, 1982 Dragon, 1985: Dragon and Chihab, 1985;
Lemaitre and Dufailly, 1977 Lemaitre, 1984, 1985, 1986 Simo and Ju, 1987a,b.c¢). In
addition, damage mechanics has been introduced to describe the inclastic behavior of
brittle materials such as conerete and rock (Francois, 1984 ; Hankamban and Krajeinovic,
1987 Kachanov, 1982 Kruajcinovic, 1983b; Krajcinovic and Fonscka, 1981; Loland,
1980 Lorrain and Loland. 1983: Mazars, 1982, 1986: Mazars and Lemaitre, 1984
Resende and Martin, 1984 ; Simo and Ju, 19874, b).

Recently, micromechanical damage theories are proposed in the literature to model
non-interacting microcrack growth in an originally isotropic lincar elastic brittle solid : see,
v.g. Wu (1985), Krajcinovic and Fanclla (1986), Sumarac and Krajcinovic (1987) (which
extends the work of Horii and Nemat-Nasser (1983) to a process model). In the case of
nonlincar elastoplasticity coupled with many distributed interacting microcracks. never-
theless, such micromechanical derivation of microcrack kinetic laws presents tremendous
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difficulties and challenges. and is an objective for future rescarch. Further, as was remarked
by Krajeinovie (1983). a purcly micromechanical theory may never replace & properiy
formulated phenomenological theory as a design tool.

Continuum damage mechanics 15 bused on the thermodynamics of irreversible
processes. the internal state variable theory and relevant physical considerations (e.g.
the assumption of distributed microcracks. homogenization concept. the definition of
micromechanical damage varable, kinctic law of damage growth, nonlocal damage
charactenzation and plasticity-damage coupling mechanism. etc.). A scalar damage
variable is suitable for characterizing (homogenized) isotropic damage processes. Neverthe-
less, a tensor-valued damage vartable (fourth order) s necessary in order to account for
anisotropic damage effects.

Many researchers in damage mechanics tocused on the linear “elastic-damage™ mech-
anics for brittle materials: ie. lincar elastic solids with distributed microcracks. For non-
lincarly elastic solids and clastoplastic solids. nonetheless, their methods are not applicable
in general. By contrast, some clastoplastic damage theories have been proposed (e.g.
Lemaitre, 1984, 1985, 1986 Dragon, 1985 Simo and Ju, 19874, b. ¢). However, it appears
that the thermodynamic free energy function and the “damage energy release rate” proposed
by Lemaitre (1985) may not be physically appropriate. In fact, the theory advocated
by Lemaitre implies that the thermodynamic force conjugate to elastoplastic microcrack
evolution is simply the clastic strain energy, i.c. plastic strains do not contribute to the
microcrack growth process. On the other hand, the theory proposed by Dragon (1985)
docs not offer thermodynamic damage encrgy criteria, nor provide tangent moduli or
numerical simulations or experimental validations. Henee, coupled clastoplastic damage
mechanics warrants further study.

[is important to clanfy the term “damage™ employed in the current literature. As was
pointed out by Krajeinovie, there are at least three different fevels of seale of “damage™ in

muaterial mechanical responses: (1) atomic vouds and crystal lattice defects, which require
the use of non-continuum mechanics models at the atomie scale; (b) microcracks and
microvoids, which require micromechanical damage models (to model microstructural
changes and individual microcracks growth) or phenomenological continuum damage
models (to model distributed microcracks) ; and (¢) macrocracks, which wiarrant fracture
mechanics models to model the growth of discrete macrocracks.

In this paper, novel energy-based (isotropic or anisotropic) coupled clastoplastic dam-
age theories are presented to charucterize distributed microcracks (not ductie microvoids)
in brittle damage modes {including “Cleavage 17, "Cleavage 2' and “Cleavage 3™ in the
sense of Ashby (1979)]. An outline of the paper is as follows, In Section 2, the definitions
of “damage vanable™ are reviewed ; the homogenization concept and alternative nonlocal
damage detimtion are discussed ; and the basic hypotheses of damage mechanics developed
are summarized. In Section 3 energy-based 1sotropic clastoplastic damage theories are
given, which are capable of accommodating nonlineur clastic response and general plastic
response. The proposed theories can predict degradation in both elastic and plastic material
properties (such as clastic moduli and plastic flow stresses). At variance with Lemuadtre’s
formulation, a new free energy function and proper
constructed.

In contrast to previous work by Simo and Ju (1987, b, ¢) (which features an additive
split of the stress tensor), this paper assumes an additive split of the strain tensor into the
“elastic damage™ and “plastic-damage™ parts from the outset. It s shown that the current
“strain split” damage-plasticity formulation is physically more appealing (analogous to the
J-integral in nonlinear tracture mechanics) and results in more robust tangent moduli than
the “stress split”™ formulation. In addition, the plastic low rule and hardening law are
characterized in terms of the cffective stress quantities; namely, the effective stress space
plasticity. A rate-dependent damage mechanism is subsequently developed to account for
the microcrack retardation effects at higher strain rates. Rational mechanism is also pro-
posed to simulate the “*mode I'" microcrack opening and closing operations.

The framework constructed in Section 3 is further extended in Scection 4 to develop
simple energy-based fourth-order anisotropic damage models for brittle materials.

damage energy release rate” are
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Recognizing the important role played by constitutive algorithms in constitutive
theories and modeling. computational aspects of the proposed elastoplastic damage
models are systematically explored in Section 3. In particular. new three-step operator
split algorithms are developed within the present framework. Application is made to a
class of inviscid and rate-dependent cap-damage models for concrete and mortar in
Section 6. Experimental validations are also given to iliustrate the applicability of
proposed damage models and algorithms.

2. A FRAMEWORK FOR DAMAGE MECHANICS

Physically. degradation of material properties is related to the initiation, growth and
coalescence of microcracks or microvoids. Some basic concepts pertaining to damage
mechanics are reviewed in this section.

2.1. Damagce variable and homogenization

“Damage™ can be defined as a collection of permanent microstructural changes con-
cerning matertal thermomechanical properties (e.g. stiffness, strength, anisotropy. etc.)
brought about in a material by a sct of irreversible physical microcracking processes
resulting from the application of thermomechanical loadings (Talreja, 1985). The sclection
of a “damage™ variable should be based on proper micromechanical considerations. For
several types of material microstructure, microcracks develop in characteristic patterns
and the microstructure can be assumed to be statistically homogencous. These patterned
dimages are observed in fibrous composite laminates, conerete and ceramics (Weitsman,
1987). Several definitions of damage are possible for consideration. For example,

(1) Define the second-order diamage tensor D as a spatial average:

!
D= ”!Z (b n+n®b)* ds™ o
- k

ASRdl

in which b and n denote the displacement discontinuity vector (b = [u]) and the unit normal
vector across the Ath microcrack surfuce S, respectively (Vakulenko and Kachanov, 1971 ;
Dragon, 1985). The representative volume Vis a proper statistical and micromechanical
measure for observing or computing an overall constitutive law. The minimum prescription
for the representative unit cell is that the magnitude ol local wave-like fluctuations about
the expected (mean) values of phase variables should not depend on the size of the unit cell
so that the system is macroscopically homogencous (Hill, 1967, 1972). At the macroscopic
level, § plays the role of an infinitesimal material netghborhood with uniform state variables.
At the microscale, however, 1 oplays the role of a micro-continuum™ with nonuniform
spatial variables (Eringen, 1968 Ortiz, 1987a). However, as pointed out by Krajcinovic
(1983), the detinition (1) is thermodynamically incorrect because it leads to energy dis-
sipation during unloading. Equation (1) is, nevertheless, a good index for “added flexibility”
(damage-induced inclastic strain) due to open microcracks.
(it) Define the damage variable o, (in the normal direction n) as

A,

d,

()

T Ay

where A, is the damaged surface arca (taking into account the microcrack arca, the micro-
stress concentration and the interaction between microcracks) and A is the total cross-
scctional arca of a surface of a unit cell along a normal direction n (sce, e.g. Lemaitre, 1984,
1985). The dcfinition of a damage variable can also be anisotropic to signify different
oricnted geometry and micro-defects in material bonding; e.g. three changing principal
normal directions of a three-dimensional oriented microcrack.
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(iit) Define the damage measure o as (assuming only one single microcrack)

1
28

d=5,

3)

where a is the radius of an assumed single spherical microcrack and F is the volume of a
representative unit cell in the mesostructure (see, e.g. Budiansky and O’Connell, 1976 ; Wy,
1983: Krajcinovic, 1987). This definition is related to the microcrack porosity (con-
centration ratio) within the unit cell. Tt is emphasized that eqn (3) can lead to a fourth-
order damage tensor representation.

The homogenization procedure can be applied not only to damage variables but also to
stresses and strains, For instance, one may write

o"s-l--,J‘adv; éE‘l‘_‘_J‘ﬂdl'- @
15 I [

2.2, Alternative nonlocal damage characterization

As was noted earlicr, the state variables display non-uniform spatial fluctuations at
the microscale. Therefore, nonlocal continuum theory may be considered for damage
mechanics (see, e.g. Bazant er al.. 1987 ; Eringen, 1983, 1987 Eringen and Edclen, 1972,
Pijaudicr-Cabot and Bazant, 1987 ; Xia et al., 1987). The essence of nonlocal theory includes
the characteristic length (/) and the “attenuation™ (weighting) function (e(x)). It is noted
that nonlocal spatial averaging is fundamentally different from the homogenization concept,
although nonlocal theory might provide a unified foundation for the homogenization
concept. @ contains a crucial material parameter  the characteristic length which is gen-
crally influenced by the spacing, size and shape of inclusions (or aggregaltes, fibers). In the
event of inhomogencous anisotropic materials, one could replace the homogencous isotropic
attenuation function m(x) by a fourth-order atienuation tensor w,, (X).

2.3, Effective stress concept and hypathesis of strain equiralence
Let us denote by M a fourth-order tensor which characterizes the state of damage and
transforms the homogenized stress tensor ¢ into the etfective stress tensor 6 vis,

M e (5)

é

For isotropic damage case, the mechanical behavior of microcracks is independent of their
orientation and depends only on a scalar variable . Accordingly, M simply reduces to
(1 —d)1, where 1 is the rank four identity tensor, and (5) collapses to

(4

a .
| —d

(6

The coeflicient (1 —d) dividing the stress tensor in (6) is a reduction factor associated with
the amount of dumage in the material first introduced by Kachanov (1958). The valuced = 0
corresponds to the unduamaged state. d = o, defines the complete local rupture (d, € [0, 1}),
and d € (0, d,) corresponds to a partially damaged state. Local stresses are redistributed to
the undamaged material micro-bonds and therefore the effective stresses are higher than
the nominal stresses. In addition, Lemaitre introduced the following hypothesis of strain
equivalence : “The strain associated with a damaged state under the applied stress is
cquivalent to the strain associated with its undamaged state under the effective stress.” See
Fig. 1 for a schematic explanation.

Remark 2.3.1. Added flexibility. Duc to the existence of microcracks, the flexibility of
a material increases. To sce this, consider for simplicity the clastic-damage case (sce Fig.
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Fig. 2. Dlustration of added fexibility. £ and £ denote the truly elastic strain and added defoemation
3 y ! !
due to microcracks, respectively.

2). Let us denote by € the undamaged stiffness and (1 - d)C? the damaged unloading
stitfness (as will be derived in eqn (21)). [t is assumed that all microcracks close upon
unloading and therefore no permanent deformation exists upon complete unloading.
Accordingly, the truly reversible (elastic) strain is obtained by following the unloading slope
C” and is designated as £, IUis observed from Fig. 2 that the gap between point O and point
A is actually the inelastic strain &/ due to microcrack opening during the loading process.
Sce also Ortiz (1985). O

3. ENERGY-BASED ISOTROPIC ELASTOPLASTIC DAMAGE MODELS

The underlying conceept of the energy-based clastoplastic damage models presented in
this section is that damage tn a material is linked to the history of both elastic and plastic
state variables. The framework constructed in this section will be extremely useful in the
development of anisotropic damage models proposed in Section 4.

The fundamental problem of the ductile plastic damage formulation advocated by
Lemaitre (1984, 1985, 1986) is the non-optimal choice of the locally averaged free energy
potential. In particular, damage is associated only with the clastic strains and the damage
energy release rate is shown to be the elastic strain energy in Lemaitre (1985). This treatment
amounts to uncoupled plasticity and damage processes, thus in a sense contradicting
experimental evidence that plastic variables also contribute to the initiation and growth of
microcracks. By contrast, a ncw free encrgy function and damage encrgy release rate are
proposed in this section. The damage cnergy release rate (energy barrier) controls the
microcrack propagation and arrest. The damage loading/unloading conditions are com-
pletely characterized by this energy barrier which is related to the local debonding energy
required to initiate or propagate microcracks. The notion of effective stress and the hypoth-
esis of strain equivalence are also utilized.
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3.1. Thermodynumic basis. Strain split
The split of the total strain tensor into the “elastic-damage™ and “plastic-damage™
parts is assumed at the outset: Le.

e=¢+¢. (7)

It is emphasized that the “added flexibility™ due to the existence of microcracks is already
embedded in ¢ and ¢ implicitly (sec Remark 2.3.1). That is, & (¢”) includes not only the
truly elastic (plastic) strain but also the added deformation due to active microcracks. Upon
complete unloading. however, we assume that all microcracks are closed and no residual
strain is induced by micro-detects. To introduce both damage and plasticity mechanisms,
let us consider the following locally averaged (homogenized) free energy function

Wi q.d) = (1 - (. q (3)

where q denotes a suitable set of plastic variables and ‘W"(¢". q) signifies the total potential
energy function of an undamaged (virgin) material. One often assumes (although unnecess-
ary) that the clastic and plastic potential encrgy functions are uncoupled ; t.e. W& q) =
WiE )+ (q).

Confining our attention to the purely mechanical theory, the Clausius-Duhem
inequality takes the form

“Wteiiz0 )

for any admissible process. Taking time derivative of cqn (8), substituting into (9), and
making use of standard arguments (Coleman and Gurtin, 1967) along with the additional
assumption that damage and plastic unloading are clastic processes, we obtain

O plt 78
o=, =(l-d) ., (1)
‘e ‘e
and the dissipative inequalities
: DL
(e ,q)d’ =0 and *(;};;;“355'— l‘}(] q=0. {n

[tis clear from egns (10) and (1) that the present framework is capable of accommodating
nonlincar clastic response and general plastic response. Morcover, it is noted that the
effective stress is given by the expression

= o Ve (12)

Remark 3.1.1. From eyn (8) it follows that

__ ¥ q.d)

- ad

= (e, q). (13)

Therefore, we conclude that the undamaged encrgy function W*(¢", q) is the thermodynamic
force (damage encrgy release rate) conjugate to the damage variable . This is at variance
with Cordcbois and Sidoroff (1982) and Lemaitre (1984, 1985, 1986). who considered only
the elastic part of the damage energy, W, (7). It is noted that by considering the elastic
damage energy only is physically incorrect since plastic dissipation is not properly accounted
for. Sec also Chow and Wang (1987a) for more anomalies of elastic damage energy releasce
rate. T
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Remark 3.1.2. A different formulation based on an additive split of the stress tensor
was previously proposed by Simo and Ju (1987a,b). In their work, the thermodynamic
damage energy release rate was shown to be ‘¥”(g) ; i.e. the total undamaged stored energy
function with the total strain tensor g as its argument. By contrast, the damage energy
release rate in the present formulation is P (¢°, q) which is smaller than 'P”(g). [tis interesting
to notice that W{(e".q) is actually the local counterpart of the global J-integral fracture
energy in nonlinear elastoplastic fracture mechanics. This is not the case of the alternative
quantity ¥ (g) proposed by Simo and Ju (1987a.b). ]

3.2. Characterization of damage

A simple isotropic elastoplastic damage mechanism is characterized in this section to
describe the progressive degradation of mechanical properties of materials. Motivated by
Remark 3.1.1, we propose to employ the (locally averaged) undamaged energy function ¥
(the damage energy release rate) to characterize the damage loading/unloading conditions.
For convenience, we define the notation & as

¢ = W(e. q). (14)

The state of damage in the material is then characterized by means of a damage criterion
g(&,.r) € 0 with the following functional form:

gnry =5 —r, <0, teR,. {15)

Here, the subscript ¢ refers to the value at current time reR,, and r, signifies damage
threshold (energy barrier) at current time ¢ (Le. the radius of the damage surface). 1f rg
denotes the initial damage threshold before any loading is applied, a property characteristic
of the material, we must have r, = rq. Condition (15) then states that damage in the material
is initinted when the damage energy release rate (&) exceeds the initial damage threshold
rq. The above energy-based damage criterion is fundamentally linked to the history of both
clastic and plastic variables. A large body of current literatures, however, adopts certain
stress-based damage criteria; see, e.g. Chow and Wang (19874, b) (which tried to remedy
Cordebois and Sidoroff, 1982). It is noted that a stress-based damage criterion in the
presence of significunt plustic flows is inherently inadequate for predicting realistic plastic
damage growth. To substantiate this statement, let us consider for simplicity the perfect
plasticity coupled with damage. The effective stresses are constant and the homogenized
stresses are decreasing ) consequently, a stress-based criterion will not predict significant
damage accumulation even under large plastic deformations.

To describe the growth of microcracks and the expansion of damage surfaces, it is
necessary to specify the equations of evolution for « and r. As was mentioned earlier,
micromechanical derivation of microcrack kinetic growth laws is currently achievable only
in the case of originally homogencous, linear isotropic clastic solids without microcrack
interaction. In the case of gencral nonlincar elastoplasticity coupled with interacting
microcracks, such micromechanical derivation is not available yet. Hence, in this section,
a phenomenological description of the kinetics of microcrack growth is attempted. For the
isotropic damage case, we define the evolution equations as

d, = gH(E, . d s.a,c.p)

Fo=q (16)
where s is the spacing of inclusions (fibers or aggregates), a the grain size, ¢ the microcrack
size. and p the porosity (e.g. water/cement ratio in concrete). In addition, gt = 0is a damage
consistency parameter which defines damage loading/unloading conditions according to

the Kuhn-Tucker relations:

120, g(&.r) <0, pg(&.r)=0. (17a~c)
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Conditions (17) are standard for problems involving unilateral constraint. If g(Z,.r,) < 0.
the damage criterion is not satisfied and by condition (17¢) we have g = 0; hence. the
damage rule (16) implies that d = 0 and no further damage takes place. If. on the other
hand g > 0. that is further damage is taking place. condition (17¢) now implies that
g(..r) = 0. In this event the value of 4i is determined by the “damage consistency con-
dition™ : i.e.

glir)=gl.r)=0=4= 2. (18)

So that r, is given by the expression

r, = max {r"'rsma,?(,,; EY}. (19)

3.2.1. Elastic-damage tangent moduli. For isotropic ductile damage, the above char-
acterization of damage results in symmetric elastic-damage tangent moduli. In the absence
of further plastic flow, ¢ = ¢ = 0. Time ditferentiation of (10) along with the damage rule
(16) and the damage consistency condition (18) then yield

(e, :
6= (- g (20)

o (181'1
where 6 = OW/ce” (the cffective stress) and, for notational simplicity, the subscript ¢ has
been dropped. By taking the time derivative of eqn (14), we obtain & = £, Substitution
into (20) then yields 6 = C(2", q. d) < €, where C(2, q. d) is the clastic-damage tangent modu-
lus given by

. AW q) L.
Ce'.q.d) =] (1=d) P —He®a|.

(21

Note that C(&", q. d) 1s a symmetric rank four tensor. Teis often assumed that the undamaged
tangent modulus € = 0*W7/0e is constant.

3.3. Coupled elustoplastic damuage response

Once microcracks oceur, local stresses are redistributed to undamaged material micro-
bonds over the effective area. Thus, true stresses of undamaged material points are higher
than nominal stresses. Accordingly, it appears reasonable to state that the plastic flows
oceur only in the undamaged material micro-bonds by means of effective quantities. In
fact, this is simply the underlying notion of the effective stress concept. Therefore, the
characterization ot the plastic response should be formulated in the effective stress space in
terms of effective quantities ¢ and q. The homogenized stress tensor o is replaced by the
cffective stress tensor 6 in the stress space yield criterion ; i.e. the “elastic-damage™ domain
is detined by f(a.q) < 0. Itis recognized that due to the existence of microcracks the plastic
flow stresses and plastic material properties degrade. Use of effective quantitics in the yicld
condition essentially has the net effect of lowering the plastic strength and flow stresses of
materials. By assuming an associative flow rule, the rate-independent damaged plastic
response s characterized as follows :

5 4

£ =4 i"-é @.q) (flow rule) (22a)
G = +h(6.q) (plastic hardening law) (22b)
S(F.9) <0 (yield condition) (22¢)

where £ denotes the plastic consistency parameter and h signifies the vectorial hardening
function. It is interesting to notice that in spite of the normality rule assumption (22a) in
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the effective stress space . the low rule direction departs from normality in the homogenized
stress space o in the case of anisotropic damage. Hence, the damage-perturbed yield criterion
and damage-induced non-associative flow rule (despite the associative flow rule in terms of
d) are accounted for in eqns (22). Further, the loading/unloading conditions can be ex-
pressed in a compact form by requiring that

f(6.9)<0. £>0, Zf(é.q) =0. (23)

/ is determined by requiring that f = 0, the so-called plastic consistency condition. Hence,
during plastic loading one has

G+

(24)

A,.\J
al<
~ "
21

oo

I

et

For simplicity. we shall assume uncoupled elastic and plastic potential energy functions:
namely, W' (€. q) = ‘P, (¢") + ¥, (q). Therefore. from eqn (10) we obtain

. 1:\*141 jl\yn of
g ‘e’ ce

where usc has been made of the flow rule (22a). Thus, 4 is determined as

P /‘ (1 Z\Pu

-~ _'AVA.' .’:

. P
A= L
of W of

. 5 N . . h

06 0 T0d Qg

(26)

Substitution of (26) into (25) then yiclds & = C7: ¢, where C7 is the effective clastoplastic
tangent modulus (a symmetric fourth-order tensor) given by

o af ® > of
o et 06 ot " 0d

Ce” of oW ef of h

P -
éé de° dd 4

To derive the elastoplastic-damage tangent moduli, we recall that ¢ = (1 —d)é. Time difter-
entiation then leads to

6=(—dyo—dd =(1—d)C?:é6—~CHa (28)

where use has been made of eqns (16) and (18). In addition, the time derivative of eqn (14)
along with eqns (22) yiclds

Npe . Af o
E=G:(6—é")+ -q=&:e—;.[&-.‘-/ - h] (29)

e 0q

Substitution of cgns (26) and (29) into (28) then renders ¢ = C*: 6. Here C7 is the
clastoplastic-damage tangent modulus given by

C? = (1 -d)T” - H[é ® 6] +

et T e

_af  owr
o= [ e o

_ RN
‘Z.f_:‘*’”.ﬁf_”_f.,,["@( )}

s R
dé 3" 06 Oq
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It is observed from eqn (30) that €7 is in general a non-symmetric rank four tensor.
Nevertheless, in the particular event in which we have constant (linear) C® = ¢*W”, ¢¢*” and
von Mises J.-plasticity, € in eqn (30) is symmetric. The above coupled clastoplastic-
damage formulation can be readily extended to accommodate non-assoctative flow rules
(in the effectuve stress space 6) by simply replacing f in eqn (22a) by a suitable plastic
potential Q(d.q).

Remark 3.3.1. A damage-perturbed vield criterion and damage-induced non-associative
flow rule in the homogenized stress space ¢ was proposed by Dragon (1985). It is noted.
however, that two different yield functions are used in Dragon (1985) to define the “genuine™
yield potential and another damage-perturbed pseudo-potential, respectively. The tangent
moduli are always non-symmetric. Moreover, the corresponding elastoplastic-damage
return mapping algorithms are rather cumbersome due to two simultaneous consistency
conditions.

t

Remark 3.3.2. For the derivation of £ in eqn (26) we have assumed that W'(e',q) =
W) + Wi (q). It this is not the case, the denominator in eqns (26) and (27) should be
replaced by the tollowing expression

S ANWwe Ag 4 Al hlry
EI':P'”/ e P'h*(/ﬂq- 0 (31)

R AN R Y VA | iq

Remark 3.3.3. In the previous work by Simo and Ju (1987a. b), the formulation hinges
on an additive split of the stress tensor. As a result, their clastoplastic-damage tangent
moduli C* are always non-symmetric even with C” constant. In addition, in the case of
nonlincar elasticity (cither physically or geometrically) coupled with damage-plasticity, the
clastic and clastoplastic-damage tangent moduli (Q*W(e)/e® and C7) are too “soft™ duc
to the fact that the argument of differentiation s the total strain tensor & (see eqn (24) in
Simo and Ju, 1987a; see also Simo and Ju, 1987¢ for the finite deformation case). These
“solt” tangent moduh could lead to numerical ditlicultics when large strains are encoun-
tered. By contrast, the present formulation employs more robust (stiffer) clastic tangent
moduli OFW (&, q),"ﬂx"" and elastoplastic-damage tangent moduli C7, with the clastic strain
tensor ¢ as the argument of differentiation. This advantage together with our J-integral-
like damage encrgy release rate (‘W'(e”, q)) make the present formulation computationally
and physically more attractive. 0

Remark 3.3.4. Selection of W (¢, q). The specitic forms of the undamaged free energy
function " depend on the mechanical behavior and thermodynamic process of materials.
From egn (1), it is observed that the thermodynamic forees conjugate to €7 and q are
AP Ce (orsimply 6) and — (AW 0q). respectively. In fact, ineqn (224), the partial derivative
is taken with respect to . Therefore, it appears rational to postulate that

q=/ or (32)

. (ﬂ\Pl!
‘. - -
cq
By comparing eqn (32) with (22b). we obtain the relation

.
hdq = —

(l"i_‘ N\
I T
g

For demonstration purpose, let us assume that ‘W9(e.q) = ‘¥ /(e") + ¥, (q) and consider the
von Mises plasticity with lincar isotropic hardening. Thus, we have d'¥,/dé” = R(¢"), with

(33)
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e and R(¢é”) signifving the equivalent plastic strain and yield radius, respectively. Hence,
we arnive at ¥, = .W R(¢?) de”. For linear hardening. R(éf) = R,+86¢?, with R, and 6
denoting the initial yield radius and slope. respectively. Accordingly. Wi (&%) = R,é” + 16¢°°.
For other plasticity models. one could assume that ¥ = L',&:da and compute P incre-
mentally. On the other hand. the torm of ‘¥, hinges on the particular hyperelasticity model
employed : e.g. for linear elasticity case. one has Wi(e) = . C: ¢ d

3.4, Rute-dependent durmage mechanism

Some experimental results (on rocks and concrete) show that the amount of micro-
cracking at a particular strain level exhibits rate sensitivity to the applied rate of loading
inadynamicenvironment. Further. strain-softening and loss of strong ellipticity phenomena
associated with damage mechanisms impose numerical difficulties in finite element com-
putations. To account for rate dependency and to regularize the localization problems. a
viscous damage mechanism is presented in this section. [t is noted that the structure of this
regularization is analogous to the viscoplastic regularization of the Perzyna type (Perzyna,
1966). In particular, rate equations governing visco-damage behavior are obtained from
their rate-independent counterpart, eqn (16). by replacing the damage consistency par-
ameter gt by ud(y). Here gois the damage viscosity coefficient. ¢(g) denotes the viscous
damage flow function and ¢ is defined in egn (15). With this at hand, we write

dy = WP HE  d, s a.c.p)
o= pdplg)) (34)

where () denotes the MeAuley bracket. In the event of lincar viscous damage mechanism
(i.c. flg) = ¢). eqn (34) then takes the form

d, = pg>YH(E, d,. s a.c.p)
’:r ":“<‘(/>E“<s=/_"rl>- (35)

The above viscous mechanism is capable of predicting retardation in microcrack
growth at higher strain rates. In addition, the inviscid damage characterization can be
recovered by letting g go to infinity. On the other hand, as u approaches zero we obtain
the instantancous elastic response (in the absence of plastic flow).

3.5. Microcrack opening and closing

Although the damage models presented in Sections 3.3 and 3.4 are isotropic, they can
be casily extended to account for the “mode I microcrack opening and closing effects. Let
us start by considering the spectral decomposition of the strain tensor (see also Ortiz, 1985)

1

e= 3y ep,@p. Ipl=1 (36)

[
where ¢, is the ith principal strain and p, the ith corresponding unit principal direction. Let
Q and Q. separately, be the regular and positive (tensile) spectral projection tensors
defined as

k]

Q=Yp®p: Q =3 A @ *
[ o

where F1(-) is the Heaviside ramp function. We now introduce the fourth-order positive
projection tensor PP with components

.7“ = Q:: Q;th;:le (38)

so that £ can be expressed as (sce also Ortiz, 1985)
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e =P e e &) = Pk (39)
It is observed that P~ depends on the total strain &,

With these notations at hand. egn (10} 1s then rephrased 1o tuke into account the active
(open) microcracks under tensile extensions. Specifically, we write

Sy

o = (I—D""'):f (40)

cg

where D*' = dP 1P~ = JdP " P~ is the fourth-order active anisotropic damage tensor. If
all three principal strains g, are tensile, then we have P™ =1 and D* = dI; i.e. the local
microcrack is open (active) in all three principal directions and we recover isotropic damage
under current state. If all ¢ are compressive, then P =0 and D™ = 0: i.e. the local
microcrack is entirely closed (passive) under current state. Clearly, other combinations of
tensile and compressive states will give rise to various microcrack opening and closing
situations.

The damage energy release rate ¢ = W in ¢qn (14) can also be modified as follows to
accommodate ductile and brittle {tensile) material damage.

3 We q) {ductile)
ST (Pritde) (41)

-

whereet =P (¢,

Remtark 3.5.1. The above discussion on microcrack closure, cgns (36) (40), 1s quite
similar to the proposal o Ortiz (1985). Howcever, there are some subtle differences between
the two tformulations. First, the explicit form of the positive orthogonal projection tensor
B oin egn (38) is more precise than that given in Ortiz (1985) (see egn (3.60) therein).
Sccond, the present discussion cmploys the deseription of stiffness degradation through the
active damage tensor D™ while Ortiz (1985) used the "added compliancee™ characterization
C(seceqns (3.11) -(3.14) in Ortiz, 19835). Third, ' inegn (38) is a nonlincar, non-constant
operator assoctiated with the current total strain tensor g, In Ortiv (1985), by contrast, there
are really two distinet orthogonal projections involved (see egns (3.9) and (3.60) therein).
Specifically, the first one is B assoctated with the current strain tensor g i g™ = P g
The other one is 1) assoctated with the current stress tensor o e, o’ = B ta (see also
eqn (3.18) in Ortiz, 1987b). In general, P, is not equal to P, . Feappears that this distinction
was not made clear in Ortiz (1985). In addition, in a strain-driven algorithm, a is yet
unknown before local constitutive iteration, Hence, use of P introduces more com-
putational efforts. Fourth, duc to the existence of two distinet orthogonal projections in
Ortiz (1985), eqns (3.11)-(3.14) therein secem unclear. In particular, egn (3.13) in Oruz
(1985) could be interpreted as

C=p.0C:p,. (42)
Accordingly, the active “added comphance™ C° becomes a non-symmetric tensor and eqn
(3.14) in Ortiz (1985) might be questionable because o ¢ is not cqual to PP, @ a. In the present
proposal, on the other hand, only one orthogonal projection PP (see eqn (38)) 1s needed
and no confusion cver arises. ]

4. ENERGY-BASED ANISOTROPIC ELASTOPLASTIC DAMAGE MODELS

The encrgy-based damage models developed in Section 3 are extended in this section
to account for anisotropic brittle microcracking effects. In vicw of the significance of tensile
extensions in brittle damage processes. proper damage characterization via tensile spectral
decomposition is employed.
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To illustrate the physical motivation of the proposed energy-based anisotropic brittle
damage model. consider the idealized situation of a cylinder subject to unconfined increasing
uniaxial compression. The objective is to simulate the “splitting mode™. By properly includ-
ing the tensile radial and hoop strains contribution to damage and screening out the
compressive axial strain contribution, the proposed mechanism would predict progressive
microcracking parallel to the axis of loading (normal to the plane of tensile lateral strains)
and ultimate failure of the specimen. This is a typical failure mode in many rock-like
materials such as concrete. Note that a damage model based on tensile stresses could not
possibly predict such a failure mode.

4.1. Thermodynamic basis

The proposed damage characterization is based on the concept of effective stress and
features a simple and effective construction of the fourth-order transformation tensor M in
eqn (3). In fact, one could define M = 1 - D (see also Cordebois and Sidoroff, 1982). The
damaged secant (unloading) stiffness tensor then takes the form C = (I-D)C”, where C”
is the undamaged linear elasticity tensor. It is observed that the damaged stiffness C
possesses a4 one-to-one correspondence with the fourth-order damage tensor D. Hence, one
could equivalently define C as the anisotropic damage variable. In addition, it is realized
that M = CC” .

As a point of departure, we postulate the following locally averaged free encrgy :

WE q.C) =W (e . C)+Wou(q.C) = 17 Cie" +¥,,(q.C). (43)

The Clausius Duhem inequality then leads to

. . A a\l‘/nl ““y,'nl - —
ife-Cor) - G S C e Coir = Mg =0, (44)
cC N cq
Therefore, we obtain the following stress strain relation
ad
o'=({— =C:¢ (45)
‘e
along with the following damage and plastic dissipation incqualitics
o,
D= ~leCie— " C20 (46)
oC
. J\P,:ul .
Df=ea:é"— "~-q=0. (47)
iq
In addition, from eqn (46) and the fact that
a4 v
Y= =le®r+ (48)

¢C oC

we conclude that [iz" ® & + (OV,,/¢C)] is the thermodynamic force conjugate to the dum-
aged secant (unloading) stiffness C. This thermodynamic force physically defines the “aniso-
tropic damage energy release rate™ and will be used to characterize damage evolution.

In particular, we shall assume that 'V, is lincar in D (or C) : e.g.

¥,.(q.C) = [(1-D):1¥;(q) (49)

where ‘f‘;(q) = 1W2(q). the undamaged plastic free energy potential. Accordingly, we have
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AW, ¢C = PuqC’ . Equation (48) can then be rephrased as

oY _

YT

Qe +PuqC (50)

4.2. Characterization of brittle damage

To account for the nature of irreversibility during microcracking processes. a damage
criterion in terms of the anisotropic damage debonding-energy refease rate ( — Y) is proposed
as follows

Gi—Y.s.d.c.p)—r, <0 (51)

1l

g9

where G is a function of the arguments. The damage process is then characterized in terms
of the following irreversible, dissipative equations of evolution

. g
C=—p_ "

a A{=Y)
=0, g0, jug=0. (52)

Equation (52) can be regarded as the Kuhn Tucker conditions of the following “principle
of maximum damage cnergy dissipation™: “For a given local strain history, the actual
damaged modulus Cis the modulus that renders maxinum damage energy dissipation™,
This principlc is analogous to the principle of maximum plastic dissipation.

To properly include the anisotropic damage energy release rate =Y in the damage
criterion (51) and the damage evolution equations (52), it s essential to define the charac-

teristic damage measure § such that
EN LAN G L (53)

where P s defined in egn (38). For an isotropic lincar clasticity tensor €7, this warrants
the following definition of &

(G —-KN

) + "bL I % Al D
- : ‘ : (PP CP ) e 54
(NG 1: [P C'P* l+2 _lt, (P C PP e (54)

G

Szl Cie! +‘T‘;ﬁ{
in which ¢, is the /th unit basce tensor of the identity tensor I and K and & are the bulk and
shear moduli, respectively. With this notation at hand, eqn (§1) is recast as follows,

g = G(Es,a.c. M) —r, <0, (55)

. - ~ T A . - . - . . . J .
In addition, we define £/ = oG08 and F, = il Fromeyn (35). it is observed that /, = SHoin
the event of damage loading. Henee, we obtamn ji = £ The anisotropic diumage (microcrack)
evolution cquation (52) then becomes

C=-CHP CP-. (56)

It is emphasized that only tensile extensions in the principal dircctions contribute to micro-
criack growth according to eqn (36). Physically, this treatment corresponds to anisotropic
(oriented) brittle microcrack propagation. Clearly, the crucial quantitics are ¢ and P°.
Note that (d/d0)(P* :g) # P ' 1 ¢ owing to the nonlincar naturc of 2 °.

Remark 4.2.1. The anisotropic damage evolution rule (52) can be viewed as an extension
of an carlicr proposal in Ortiz (1985) (for mortar). There exist. nevertheless, several sig-
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nificant differences between the two formulations, which are as follows. (i) Ortiz (19835)
assumed that the rate of irreversible (plastic) deformation is coaxial with the total rate of
inelastic deformation (consisting of contributions of increasing damage and increasing
permanent deformations). This assumption is not utilized in the present formulation.
(it) Ortiz’s (1985) formulation focused on the rate of "added compliance™ tensor while the
present proposal focuses on the rate of “damaged secant (unloading) stiffness™ tensor. It
is emphasized that the two procedures are not equivalent. (i) The “perfectly brittle™ and
“plastic microcracking™ damage models in Ortiz (1985) are really stress-based. That s, the
damage criterion and damage flow rule are based on the current stress tensor (g or a7 ;
see eqns (3.30). (3.34), (3.41). (3.47) in Ortiz (1983). In particulir, plastic {(permanent)
strains do not contribute to the damage criterion ®(o. 1) in Ortiz’s models. As previously
discussed in Section 3.2, stress-based damage criterion s inherently inadequate for coupled
damage-elastoplasticity when plastic deformation is significant. O

pendently from the damage evolution in terms of effective stress quantities exactly as in
Scction 3.3, O

Remark 4.2.3. A rate-dependent anisotropic damage mechanism can be constructed
analogous to the formulation proposed in Scction 3.4, In essence, we have the following
cvolution equations (sce eqn (34)):

C= — gy e cp: (57)
Fo= gt O (58)

Remark 4.2.4. The “mode I microcerack opening and closing mechanisms can be casily
accommodated within the proposed anisotropic damuage framework. First, we detine the
“total stiffness loss tensor™ as

= J (-C)dr. (59)

s

Then we define the “active stiffaess loss tensor™ €4, (due to open microcracks) and the
“active damaged seaint stiffness tensor™ C as follows

CLo=prCipt (60)
=0 - {61

The stress/elastic-strain relationship then takes the form
o =C"g. {62}

If all three principal strains ¢, are tensile, then we have C* = C. On the other hand, it all
&, are compressive, then C = C”;i.e. the local microcrack is entirely closed under current
state. It 1s noted that Ortiz (1985) proposed similar treatment to accommodate the active
“added compliance™ tensor. The results of the two treatments, however, are not equivalent
stnce the inversion procedure destroys the equivalency. O

Remark 4.2.5. The anisotropic damage mode! presented in this scction is based on
tensile brittle falure mode. For some brittle materials such as concrete, however, both
tensile and compressive failure modes can occur. To accommodate this phenomenon, egn
(56) can be modified, following an approach in Ortiz {1985) (sce cgqn (3.18) therein), as
follows to account for both tensile and compressive strain contributions:
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C=-"HPCP ~{ HPCP (63)

.

where the superscripts =+ " and ** — " signify the tensile and compressive damage evolution
quantities, respectively. In addition, P =1-P~. Therefore. tensile and compressive
microcrack initiation and growth can develop simultaneously and separately (at different
rates). ]

Remark 4.2.6. Due to anisotropic damage evolution, an originally isotropic material
becomes fully anisotropic, and the associated Poisson’s ratio becomes a second-order
anisotropic tensor. 0

5. COMPUTATIONAL ALGORITHMS FOR DAMAGE MODELS

Numerical integration algorithms for the proposed elastoplastic-damage evolution
equations are systematically explored in this section within the context of the finite element
method. Use of the “operator split method™ leads to a class of simple and cfficient consti-
tutive algorithms. In particular, new three-step operator split algorithms are presented for
the proposed damage models. Strain softening and localization issues concerning damage
modecls are also addressed.

S Inviscid isotropic damaye algorithim
We first summarize the locally averaged clastoplastic-damage rate constitutive equa-
tions,

£ = Valy)
d, =il
Fo=

=0, g(&.r) <0, py(s.r)=0

d Mg, q)
G’-—dl(:(l—l,) ”(78" - ] (64)

L Laf
8= 4 Py (5,q)
q = +h(d.q)
£20, f(6.q) <0, if(é.q) =0

where & is the damage energy release rate.

From an algorithmic point of view, the problem of integrating the evolution equations
(64) amounts to updating the basic variables [, d. 2”7, q} in a fashion consistent with the
constitutive model. It is important to realize that during this updating process the history
of strains 1 — & = V'u(¢) is assumed to be given.

Equations of cvolution (64) are to be solved incrementally over a sequence of given
time steps [£,.¢,,,] @ R, n=0,12,.... Thus, the initial conditions for eqn (64) arc

f . 1
{a.d.e" . q}],., = {6,.d,.8.q.}. (65)

In accordance with the notion of operator split, we consider an additive decomposition of
eqn (64) into the following clastic, plastic, and damage parts.
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Plastic part

Damage part

é= V() é=0 i=0
, ) . (iH iffg, =g, =0
d=0 d=90 d= .
0 otherwise
. . ;: 1ffgr =g = 0
r=0 r=0 ~ 10 otherwise
- [t - 7] (‘\yn

T LY - _

¢ =(l-d) proal (1—d) T d— px
(3

& =0 e"—/.—(aq) ¢ =0
q=0 q = +h(6.q) q=0. (66a-<)

It is noted that the three columns of (66) do indeed add up to eqn (64), in agreement with
the notion of operator split (sce Chorin ¢t al.. 1978). Further, the first two columns of eqn
(66) define the classical elastoplastic problem (with damage variable o fixed) and the
corresponding computational algorithm reduces to the clastic predictor/plastic corrector
scheme. In what follows we give a step-by-step cfficient integration procedure.

5.1.1. Elastic predictor. An algorithm consistent with problem (66a), referred to as the
“clastic predictor™ in the sequel, is given by the following process.

(i) Strain update. Given the incremental displacement ficld u,, (. the strain tensor is
updated at Gauss points as

Eiv1 = ’:u+vxunl [ (67)

(i) Elastic trial stress. By merely performing function evaluation (no iteration), we
obtiin

cl'lflll =gl q:'n:ll =q,: 1:,“:' = ‘/" (68)
IW* (2 8,,,( :'n:l
oy = (1—d, )‘ e, —& @) L _ 9ath (69)

-)ze ’ nr!

T (l-d)’

5.1.2. Plastic corrector. To develop an algorithm consistent with the plastic part (66b),
the plastic yield condition is checked first.

(1i1) Check for yiclding

< 0 elastic = go to step (v)

S@ { (70)

> 0 plastic = rcturn mapping.

(iv) Plastic return mapping corrector. In the case of plastic loading, predictor stresses
and internal variables are “returned back™ to the yield surface along the algorithmic
counterpart of the flow generated (66b). One typically cmploys either the closest-point-
projection or cutting plane algorithms (see, ¢.g. Simo and Ju, 19874, b). Once the plastic
consistency condition (in effective stress space) is enforced, state variables at the end of
plastic corrector phase become

{&n#h‘[n'zll:fl'qnbl}' (71)
It should be noted that all existing return mapping algorithms for elastoplasticity become
directly applicable (with no modification) in our elastoplastic-damage formulation.

SAY 25:7-H
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3.1.3. Damuge corrector. To complete the product formula algorithm, it remains to
develop an algorithm consistent with the damage part (66¢) which operates on initial
conditions (71) to produce the final state {e,. . d,._1.€].,.q,. .}

(v) Damage evolution. Compute “"damage energy release rate™ 2, | according to
:nol = l*’“(£:~l~qr1-l) (72)

where &, = ¢,., —¢&f, . The damage variable , ., and damage threshold r,_, are then
given by

d, if i, <0

dior = d+(Cho —ENVH, ., otherwise (73)
Faoy =max {r, &y} (74)

[ =(l—‘n*l)&ﬂ+’l' (75)

It is emphasized that no iteration is required in the damage correction phase. Although
plasticity and damage are coupled in rate cquations (64), the algorithmic treatment renders
uncoupled plasticity and damage algorithms. The simplicity and efficicncy of the overall
procedure are noteworthy.

5.2, Rate-dependent isotropic damage algorithm

The rate-dependent damage mechanism deseribed in Section 3.4 can be efliciently
implemented to obtain consistent and accurate incremental solutions. In this scction, a one-
parameter family of unconditionally stable integration algorithm is presented. Let us assume
that damage loading is taking place tie. g = &, , | —r, > 0. By applying the generalized mid-
point rule to eqn (35) we have

11

8:;?! = ac;‘l' [ +(l—a)8:; 5"0! \{‘,‘(c:fl‘qllfl)
r;nrxzxrrnvl+(l_1)rrl; (Inrx=(IH+A.“’IP1.(/HO-III"V1
r’l!X =r’l+A‘Il'lf1.(/’l}‘X Er“+All’l*1(:ﬂ7'1.—r"VI) (76)
where x€{0, 1] and Ay, ,, = p(1,,,—1,). The amount of expansion experienced by the
damage surface during the time step is computed from (76) by solving for r, | :

[] _(l "a)Aﬂn&x]ru'f'A“n—x‘fnvl
= e o L T (a 2
l + XA!IH 2z

o

). 7

Fpes =

From clementary numerical analysis, we note that algorithm (76), (77) is unconditionally
stable for 2 = } and sccond-order accurate for x = 4. Typically, the value « =1 cor-
responding to a backward-Euler finite difference scheme is employed. We will restrict our
attention to this casc in the ensuing development. The elastic predictor and plastic corrector
are identical to the previous derivation shown in Section 5.1, Only the damage corrector
phase needs modification to account for rate dependency. The numerical integration scheme
for rate-dependent damage corrector is summarized for convenicence in Table 1 for the fully
implicit case (2 = 1).

It is interesting to examine two limiting values ¢ — 0 and u — <o of the damage viscosity
cocflicient, and thceir effect on the evolution of r,, , and g,, ;.

(a) For ¢t = 0 (so that Ay, ., = 0), weobtainr,,, —»r,and gy, , = (¢,.,—r,). Hence,
no further damage takes place during the time increment and (in the absence of plastic
flow) one has instantancous elastic response.

(b) For u— oo (so that Ay, — x), we have r,, | = &1, g0 — 0, and Ad, .| =
A, H,.,. This situation corresponds to the rate-independent damage character-
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Table 1. Rate-dependent damage corrector algorithm

(1) Compute current “*damage energy release rate” ¢, , according to
Sary = W0Ue, 1o Qs )

{2) Check the damage loading criterion: g(&,, |,7.) = .01 —70 > 0?
YES: rate-dependent damage loading. Proceed to (3).
NO: no further damage within this time step. Exit.

(3) Compute r,,, and Au,, (goyy:

Al‘n¢ = /"A’u-l

- [’n+Al‘~¢l:n+l]
e [l+A#n+ll

A“nbl
+* LR = A n+ =T x vz"“ _‘rﬂ -
Aflny 1 Gner Y Y.y (S )

(4) Update damage parameter and stress:
A‘I:w [ Auu» lyn+lHn+ 1
d, . =dy+A4d,,,

Gy = (1=dy)d 0.

ization. Hence, as p— x we recover the inviscid damage model characterized in
Section 3.2, Note that since 0 < u € oo we must haver, < r,,. | € &, ; namely, the expan-
sion of the damage surface is properly bounded between the instantaneous elasticity and
the inviscid damage limit.

5.3, dnisotropic damage algorithm

The operator splitting methodology developed in Section 5.1 can be immediately
extended to accommodate anisotropic brittle damage mechanism outlined in Section 4.2,
The three-step operator split is as follows.

Elastic part Plastic part Dumage part

é = V¥a() £=10 =0
~EHPYCP* iffg, =g,=0

C=0 C=0 ¢= L
0 otherwise

0 0 . E iffg,=¢,=0
"= r= "Z 10 otherwise
d=C:é 6= —-C:¢ o=C:¢
YY) :
& =0 c”=A5&:(o',q) & =0
q=0 q = /h(4.q) q=0.

(78a~)

Computationally, the only modification needed concerns the anisotropic damage corrector,
now involving an cigen-calculation to compute the positive (tensile) projection of the strain

tensor.

5.3.1. Anisotropic dumage corrector. Step (v) outlined in Section 5.1 is modified as

follows.

(v) Damage

cvolution

(a) Perform the spectral decomposition :

3

iy = Z £&§p ® p,.

t= |

(79
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(b) Compute Q,.,and Q, ., :

1 3
Q. =Yp®p: Q.. =3 Hep ®p. (80)

=1 =1

Recall that A(-) denotes the Heaviside step function.
(¢) Compute the projection tensor P, ; and the elastic tensile strain tensor &7 | .

okt = Qa Q0 On: &l =P 6., (81)

(d) Compute the damage energy release rate ., according to eqn (54).
{¢) Update anisotropic secant (unloading) stiffness modulus according to eqns (55).

(56):
C, if G(Z,,1.5.a.c.p)—r, <0
C’Hl = 5 3 + Ogp + : (82)
Cn'—(;n+|_—gn)Hn+lpn+|C n+ 1 OthCrWISC
(F) Update the damage threshold r,, , and Cauchy stress g, ,
Fpop = Max {rm Gné»l} (83)
aan:Cnrl:};;;l- (84)

Remark 5.3.1.1. A rate-dependent anisotropic damage algorithm can be constructed
parallel to the rate-dependent sotropic damage algorithm in Table 1. dJ

5.4, Strain softening and localization

It is now well known that there are uniqueness, well-posedness and numerical con-
vergence problems associated with apparent “strain-softening™ computations due to the
loss of material strong cllipticity. As a result, finite clement computations exhibit spurious
mesh sensitivity when the mesh size goes to infinitesimal. These numerical diflicultics may
be overcome by means of the nonlocal damage theory (see, e.g. Eringen and Edelen, 1972
Baxant er al., 1987 Xia ¢t al., 1987), or viscous damage model presented in Section
3.4, The nonlocal damage characterization is physically very appealing at the microscale.
However, experimental determination of the characteristic length 1 and the weighting
function @ may be major problems. Recently, nevertheless, Bazant and Pijaudier-Cabot
{1988) proposed an interesting method to determine the characteristic length from exper-
imental data. Further, nonlocal computation is to some extent incompatible with focal finite
clement caleulation and further enhancement in consistency and accuracy is needed. On
the other hand, the proposed viscous damage mechanism is not only suitable for accom-
modating dynamic rate cffect but also oflers a possibility for controlling loss of ellipticity.

In particular, following a linc of argument due to Valanis (1983), it can be shown that
a viscous damage model of the type (35) sutistics the positiveness condition in Valanis
(1983) and therefore leads to well-posed initial-value problems. To this end, we take
differentiation of the relation ¢ = (1 —d)é and use eqn (35) to obtain

é¢=(l—d)é—dé
= (1 =d)C": é—pulgdHe. (85)
We recall that 6 = @W°(£°. q)/de” and C is the effective elastoplastic tangent stiffncss given

in eqn (27). At a state defined by {e.d.r}. for two different stress rates a4, @, and two
different strain rates €, and &,, it follows from (85) that

(6, —ad:): (&, —£:) = l(l —d) (€, _él):C”’:(él —£)>0 (86)

provided that the undamaged clastoplastic tangent modulus €7 is positive definite and
d < |. Thus, the material is positive in the sense of Valanis (1985).
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In recent years, the applicability and limitations of distributed damage models to brittle
materials such as concrete have been questioned by some researchers (see. e.g. Read and
Hegemier. 1984). The fundamental question is to what extent the softening that is observed
experimentally (for a boundary-value-type sufficiently large specimen) is a mantfestation
of local material behavior or. on the contrary. a global structural (boundary-value) effect
brought about by fracture (macrocracks) and strain localization (such as shear band
formation). To answer this question. we really should separate the issue into two parts. The
first part concerns the boundary-value-type experimental testing of specimens. The second
part focuses on the local constitutive behavior (not boundary-value problem) within the
framework of the unit cell-based “meso-mechanics™, the concept of characteristic length.
together with the self-consistent method or homogenization technique. [t is noted that. in
the case of concrete, the characteristic length is approximately three times the aggregate
size according to Baxant and Pijaudicr-Cabot (1988). and a unit cell contains approximately
30-100 aggregates according to Krajcinovic and Fanella (1986).

For a sufficiently large (bigger than the unit cell) experimental specimen, the observed
force-displacement curve indeed represents the global boundary-value-type response, rather
than the local stress-strain behavior of a material element. In fact. in this boundary-value
problem. there are three factors contributing to the apparent softening which is observed
experimentally. These factors include: () the nucleation and growth of many distributed
microcracks in the specimen, leading to local material softening in the sense of unit cell
based meso-mechanics; (b) the strain localization phenomenon, resulting from the loss of
cllipticity and stability of materials (see. e.g. Ortiz, 1987b); (¢) the formation and propa-
gation of global boundary-value-type macrocracks which are the direct products of
microcrack coualescence in the specimen. Based on the above statements, this writer agrees
with thosc rescarchers who concluded that true material softening is fesy than the apparent
global softening observed in experiments. Thercefore, strictly speaking, the global foree
displacement curve should not be directly interpreted as the local stress strain curve of a
material clement.,

On the other hand, within a statistically representative unit cell (meso-mechanics),
distributed microcracks and strain softening (at the meso-scale) do make sense since dis-
tributed microcracks (within the unit cell) do induce stiffness degradation and strain soften-
ing. One can factually apply the self-consistent method or the homogenization technigue
to compute the degradation of clastic and plastic material properties of a unit cell. These
computations are, of course, related to the scale of the characteristic length of a material.
Further, the so-called “size etfects™ (see, ¢.g. Sabnis and Mirza, 1979 ; Bazant, 1984 ; Fanclla
and Krajeinovie, 1988) are also closely related to the scale of characteristic length.

In summury, distributed damage models are suitable for modeling distributed (many)
microcricks and material responses (not necessarily softening) in structural members before
macrocracks become globally dominant. After the microcracks coulesee to form macro-
cracks, one can switch to fructure mechanics approaches provided that one takes into
account: (1) the damage process zones in front of macrocracks (i.c. the macrocrack-
microcrack interactions), and (ii) the damage-induced stiffness degradation and anisotropy
in muny (distributed) unit cells. Without these accounts, the resulting fracture calculations
are not realistic nor meaningful. Conversely, direct application of a distributed damage
model Lo solve a problem involving a single dominant macrocrack (in a boundary-value
setting) s not likely to yield accurate results regarding macrocrack geometry and macro-
crack opening displacement. Finally, distributed damage models are not directly suitable
for predicting localization instability in materials.

6. APPLICATION TO CONCRETE AND MORTAR. EXPERIMENTAL VALIDATION

Concrete is a three-phase cementitious composite material composed of aggregate,
mortar and interface zone (see, c.g. Mcehta, 1986). Each of the three phases is itself multi-
phase in nature. For example, cach aggregate particle may contain several minerals. and
mortar is actually a mixture of cement paste and sand particles. Further, concrete has
microcracks in the interface zonc even before a structure is first loaded duc to bleeding,
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shrinkage. cement hydration heat. ete. The interfuce zone between the aggregate particle
and mortar is typically 10-30 um thick around large aggregates and is in general weaker
than either aggregate or mortar. Due to this strength-limiting phase, the strength of concrete
is considerably lower than that of mortar or aggregate.

Under compressive foading. microcracks initiate and propagate in the interface zone
at low stress level. signitying a low energy barrier W in the interfuce. These microcracks
become unstable and propagate until they are arrested by cement paste matrix which has
a higher value of debonding (damauge) energy barrier W”. When the stress level is above
50% of the ultimate strength, matrix (mortar) microcracks initiate and gradually spread
until they join the microcracks originating from the interface zone. The coalesced crack
system then becomes continuous. The crack system may be arrested by aggregate, but may
also lead to rupture of local materials. Most stable microcracks are of the size of aggregate
tacets. Hence. aggregate size is closely related to the charactenstic length of concrete.
Constderable damage energy 1s needed for the formation and extension of matrix micro-
cracks under a compressive load. By contrast. under tensile loading much less damage
encrgy is required to initiate and propagate microcracks in matrix and interface zone.
Therefore, concrete fails in brittle fashion in tension mode and is much tougher (more
ductile) in compression fatlure mode. It is also recognized that plasticity (permanent defor-
mation) in concrete is primarily due to the extended microcrack surfaces which are not
completely closed even under unloading.

Without resorting to multi-phase mixture theories and models, we employ either
isotropic or anisotropic damage models in the following sections to simulate microcrack
witiation and growth in the interfice zone and mortar matrix ol concrete. Experimental
validation involves both rate-independent and rate-dependent conerete testing data, In
addition, microstructural factors such as the average aggregate size/spacing ratio are con-
stdered in the microcrack kinctic equations.

0.1, Experimental validation of isotropic damage model

The isotropie energy-based damage mechanism developed in Section 3 is spectalized
in this scetion to capture basic features of the behavior of concrete and mortir within
bounds of experimental error. A two-invariant cap plasticity model originally proposed by
DiMaggio and Sandler (1971) (see also Sundler er «f., 1976 Sandler and Rubin, 1979 ;
Simo et al., 1988) is employed to account for the plastic behavior of concrete. In view of
the present shortcomings of experimental techniques and the wide scattering in available
experimental data for concrete and mortar, a precise quantitative evaluation of the pre-
dicting capabilitics of a given constitutive model does not seem to be warranted. Instead,
it is felt that an overall qualitative reproduction of the main features of material behavior
should play a dominant role in material modcling,

In particular, the kinetic law of microcrack growth, eqn (16) reduces to the following
form:

d=(k+HZAE. c.p) (87)

where & = a/s is the average aggregate size/spacing ratio. Note that if aggregates are
infinitely far away from one another, then & is 0. On the other hand, if aggregates are in
contact, then & is 1, The bigger & is, the higher the aggregate/cement interface arca density
is and hence the faster the microcrack density grows. Certainly, eqn (87) is not a micro-
mechanical kinetic equation. For exponentially growing progressive damage. the evolution
function £7 is assumed to be

- Sl — A
HE.c.p) = E‘)r(»~:~ -.v-) +ABexp [B(E,—9)]. (88)

S

Here 4 and B are characteristic material parameters (implicit functions of ¢ and p). and &,
denotes the characteristic initial damage threshold. These parameters can be estimated in
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a systematic manner from suitable experimental data. The average aggregate size/spacing
factor k is taken as 0.7 for the following concrete specimens.

6.1.1. Colorado concrete datu. The duta for the following examples are taken from the
well-documented experimental program conducted at the University of Colorado (see
Scavuzzo et al.. 1983) on a systematic three-dimensional testing of concrete (/) = 4 ksi).
The program consists of six major series of non-conventional multiaxial cyclic stress—strain
curves. It is noted that replicate tests were run for some experiments, which enable us to
assess the relative consistency of experimental data. The numerical results reported below
not oaly include fitting of the model to complicated 3-D stress paths but, in addition,
predictions of material behavior obtained by exercising the model against experimental
results.

Circular stress path tests. Tests 3-3 and 3-4 uare replicates concerning the following
loading paths. The specimens are first subjected to hydrostatic monotonic loading to a
specified deviatoric plane. followed by deviatoric loading along the triaxial compression
path until completion of the specific circular path. The model parameters are obtained by
optimal fitting with respect to test 3-3. These model parameters are then employed in the
subsequent simulation intended to predict the behavior observed in the replicate test 3-4
under significant experimental data perturbations. In spite of considerable data corruption,
good overall predictive capability of the model is obscrved, as illustrated in Figs 3 and 4.
To demonstrate the effect of the aggregate sizeyspacing factor & on damage growth, three
hypothetical & values (A = 0.1, 0.5, 0.9) arc further cmployed to simulate test 3-3; see Fig.
5. It is clear that as & increases, microcrack density increases and therefore stress response
degrades.

Cyelic simple shear tests. Tests 2-3 and 2-4 are intended to explore concrete response
to deviatoric simple shear cycles with stress reversal about the hydrostatic state. Material
parameter estimation is performed with respect to test 2-4, and prediction is exercised for
test 2-3 (replicate). The results are shown in Figs 6 and 7. The overall qualitative agreement
between simulations and experiments is satisfactory.

6.1.2. Uniaxial compression tests. In this example, we perform two replicate uniaxial
unconfined compression tests of mortar (with /7 = 12 ksi). The composition of mortar is
as follows: cement 649 g, water 195 g, sand 150 g, plasticizer 9.1 ml. Ottawa sand with a
fincness modulus of 2.1 1 is employed. The gradation is as follows: 33.33% retained on sieve
gauge 30, 77.77°% retained on sieve gauge 50 and 100% retained on sieve gauge 100,
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Fig. 3. Comparison of the experimental and isotropic simulated (fitted) data for Colorado concrete
test 3-3.
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Fig. 5. Demonstration of the effect of the aggregate size/spacing factor & on the damage growth
and stress response for test 3-3.
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Fig. 6. Comparison of the experimental and isotropic simulated (fitted) data for Colorado concrete
test 2-4.
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Fig. 7. Comparison of the experimental and isotropic simulated (predicted) data for Colorado
concrete test 2-3.

Material parameters are obtained by optimal fitting with respect to test "M ™ and prediction
s carricd out for test "M 2™ see Figs 8 and 9. The effect of the inclusion size,spacing factor
k (sand concentration) on damage growth can be seen again from Fig. 10 in which three
hypothetical & values (K = 0.1, 0.5, 0.9) arc employed to simulate test "M,

0.2, Experimental validation of rate-dependent isotropic damaye model

Two dynamic uniaxial compression concerete tests (Suarts and Shah, 1983, 1984) are
considered in this section based on the rate-dependent isotropic damage algorithm given in
Table 1. Two different constant strain rates are employed: fast loading (¢ = 0.088 secc ')
and slow loading (¢ = 1.0¢ -6 see '), The static uniaxial compressive strength is estimated
to be 6.8 Ksi.

Figure 11 shows experimental and simulated results at two strain rates. Good quali-
tative and quantitative agreement between the model and the experimental data is obtained.
The rate enhancement of stress response due to the viscous damage mechanism is clearly
demonstrated. That is, growth of microcracks is retarded at higher strain rates.
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Fig. 8. Comparison of the experimental and isotropic simulated (titted) data for uniaxial com-
pression mortar test "ML
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Fig. 9. Comparison of the experimental and isotropic simulated (predicted) data for uniaxial
compression mortar test M2,
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Fig. 10. Demonstration of the effect of the aggregate size spacing tactor & on the damage growth
and stress response for test "M
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Fig. 1. Comparison of the experimental and isotropic simulated dynamic stress-strain curves for
uniaxial compression test of concrete spectmens.



On energy-based coupled elastoplustic damage theories 829

6.3. Experimental validation of anisotropic damage model

The fourth-order anisotropic damage mechanism presented in Section 4.2 is employed
next to simulate anisotropic damage growth in mortar. We recall from eqn (63) in Remark
4.2.5 that tensile and compressive strains can independently contribute to microcrack
evolution. The uniaxial unconfined compression mortar tests previously considered in
Section 6.1 are taken as examples again in this section. Under uniaxial compression, the
fourth-order anisotropic damage mechanism reduces to an orthotropic damage mechanism
and the reproduction of the splitting mode™ of cylindrical specimens is sought.

Since the tensile strength £ is approximately one-tenth of the compressive strength £,
it appears reasonable to assume that the compressive microcrack growth rate (in the axial
direction) is approximately 10% of the tensile (mode 1) microcrack growth rate (in the
lateral direction). As a consequence of the orthogonal eigenprojections (P* and P~) and
different growth rates, microcracks develop in the lateral and axial directions progressively
and independently. In particular, microcracks form rapidly along axes parallel to the axis
of loading, reduce the lateral stiffness gradually, and ultimately lead to the splitting failure
mode. Experimental and numerical results for tests "M 1™ and ~*M2" are shown in Figs 12
and 13. In addition, the apparent Poisson’s ratios for tests "M 17" and “M2™ are displayed
in Figs 4 and I5. Itis cmphasized that microcrack growth and stiffness degradation in the
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Fig. 12, Comparison of the experimental and anisotropic simufated (fitted) data for uniaxial
compression mortar test "M
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Fig. 13. Comparison of the experimental and anisotropic simulated (predicted) data for uniaxial
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lateral direction is much much faster than that in the axial direction due to our anisotropic
damage mechanism.

6.4. Experimental validation of rate-dependent anisotropic damage model

We re-examine the rate-dependent concrete tests previously discussed in Section 6.2
by a rate-dependent anisotropic damage model (see Remark 5.3.1.1). Again, microcracks
develop rapidly along axes parallel to the axis of loading. and the splitting failure mode is
obtained. Experimental and numerical results for two different rates (¢ = 0.088 sec™' and
€ = 1.0¢—6 sec™') are shown in Fig. 16. The capability of the proposed mechanism
to simulate rate dependency and “splitting modes™ of cylindrical concrete specimens is
noteworthy.

7. CLOSURE

A number of encrgy-based isotropic and anisotropic damage models have been pro-
posed in this paper to characterize microcrack initiation and growth in ductile and brittle
materials. Thermodynamic basis, general nonlinear response, strain rate dependency. dam-
age threshold. damage kinetic law. microcrack opening and closing. coupling of damage
and plasticity, and anisotropic (brittle) damage mechanism have been presented within the
general framework of damage mechanics, unit cell and homogenization concept. Damage
initiation and propagation are linked to the (locally averaged) “total undamaged strain
energy” Wi(e", q). which is checked against the debonding energy (current damage threshold)
required for unstable microcrack growth. Tt is noted that in the current literature damage
models are cither simply clastic-damageable or containing improper clastoplastic-damage
thermodynamies and mechanisms,

Another essential purpose of the present work is to demonstrate that the proposed
classes of clastoplastic-damage constitutive equations are well suited for large scale com-
putation in spite of their sophistication. Use of the operator splitting methodology leads to
three-step integration algorithms which, in addition to isotropic and anisotropic damage,
are capable of accommodating general elastic plastic response.

Experimental vahdation of the proposed models against conerete and mortar specimens
15 also given. We observe good qualitative and quantitative agreement between experimental
data for concrete and mortar and the proposed models. In particular, softening behavior
ts well captured. Micromechanically based damage theories will be objectives of our future
research.
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